Skip to main content
Log in

Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson’s disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson’s disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson’s disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Abbreviations

Aβ:

β-amyloid

AD:

Alzheimer’s disease

aSyn:

α-synuclein

CNS:

central nervous system

ENS:

enteric nervous system

GIT:

gastrointestinal tract

LPS:

lipopolysaccharides

NS:

nervous system

PD:

Parkinson’s disease

PNS:

peripheral nervous system

SCFA:

short-chain fatty acids

sPD:

sporadic Parkinson’s disease

References

  1. Stefanis, L. (2012) α-Synuclein in Parkinson’s disease, Cold Spring Harb. Perspect. Med., 2, a009399, https://doi.org/10.1101/cshperspect.a009399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rochet, J. C., and Lansbury, P. T. (2000) Amyloid fibrillogenesis: themes and variations, Curr. Opin. Struct. Biol., 10, 60-68, https://doi.org/10.1016/s0959-440x(99)00049-4.

    Article  CAS  PubMed  Google Scholar 

  3. George, J. M. (2002) The synucleins, Genome Biol., 3, reviews3002.1, https://doi.org/10.1186/gb-2001-3-1-reviews3002.

    Article  Google Scholar 

  4. Lavedan, C. (1998) The synuclein family, Genome Res., 8, 871-880, https://doi.org/10.1101/gr.8.9.871.

    Article  CAS  PubMed  Google Scholar 

  5. Chandra, S., Chen, X., Rizo, J., Jahn, R., and Südhof, T. C. (2003) A broken α-helix in folded α-synuclein, J. Biol. Chem., 278, 15313-15318, https://doi.org/10.1074/jbc.M213128200.

    Article  CAS  PubMed  Google Scholar 

  6. Tarutani, A., and Hasegawa, M. (2019) Prion-like propagation of α-synuclein in neurodegenerative diseases, Prog. Mol. Biol. Transl. Sci., 168, 323-348, https://doi.org/10.1016/bs.pmbts.2019.07.005.

    Article  CAS  PubMed  Google Scholar 

  7. Jan, A., Gonçalves, N. P., Vaegter, C. B., Jensen, P. H., and Ferreira, N. (2021) The prion-like spreading of alpha-synuclein in Parkinson’s disease: update on models and hypotheses, Int. J. Mol. Sci., 22, 8338, https://doi.org/10.3390/ijms22158338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshimoto, M., Iwai, A., Kang, D., Otero, D. A., Xia, Y., and Saitoh, T. (1995) NACP, the precursor protein of the non-amyloid β/A4 protein (Aβ) component of Alzheimer disease amyloid, binds Aβ and stimulates Aβ aggregation, Proc. Natl. Acad. Sci. USA, 92, 9141-9145, https://doi.org/10.1073/pnas.92.20.9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin, H., Kanthasamy, A., Ghosh, A., Yang, Y., Anantharam, V., and Kanthasamy, A. G. (2011) α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity, J. Neurosci., 31, 2035-2051, https://doi.org/10.1523/JNEUROSCI.5634-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hashimoto, M., Hsu, L. J., Rockenstein, E., Takenouchi, T., Mallory, M., and Masliah, E. (2002) α-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells, J. Biol. Chem., 277, 11465-11472, https://doi.org/10.1074/jbc.M111428200.

    Article  CAS  PubMed  Google Scholar 

  11. Sulzer, D., and Edwards, R. H. (2019) The physiological role of α‐synuclein and its relationship to Parkinson’s Disease, J. Neurochem., 150, 475-486, https://doi.org/10.1111/jnc.14810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rizo, J., and Südhof, T. C. (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices-guilty as charged? Annu. Rev. Cell Dev. Biol., 28, 279-308, https://doi.org/10.1146/annurev-cellbio-101011-155818.

    Article  CAS  PubMed  Google Scholar 

  13. Vargas, K. J., Makani, S., Davis, T., Westphal, C. H., Castillo, P. E., and Chandra, S. S. (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis, J. Neurosci., 34, 9364-9376, https://doi.org/10.1523/JNEUROSCI.4787-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burré, J., Vivona, S., Diao, J., Sharma, M., Brunger, A. T., and Südhof, T. C. (2013) Properties of native brain α-synuclein, Nature, 498, E4-E6, https://doi.org/10.1038/nature12125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alam, P., Bousset, L., Melki, R., and Otzen, D. E. (2019) α-Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities, J. Neurochem., 150, 522-534, https://doi.org/10.1111/jnc.14808.

    Article  CAS  PubMed  Google Scholar 

  16. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., and Radford, S. E. (2018) A new era for understanding amyloid structures and diseas, Nat. Rev. Mol. Cell Biol., 19, 755-773, https://doi.org/10.1038/s41580-018-0060-8.

    Article  CAS  PubMed  Google Scholar 

  17. Matiiv, A. B., Trubitsina, N. P., Matveenko, A. G., Barbitoff, Yu. A., Zhuravleva, G. A., and Bondarev, S. A. (2020) Amyloids and amyloid-like aggregates: diversity and the term crisis, Biochemistry (Moscow), 85, 1011-1034, https://doi.org/10.1134/S0006297920090035.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, K.-P., Weinstock, D. S., Narayanan, C., Levy, R. M., and Baum, J. (2009) Structural reorganization of α-synuclein at low pH observed by NMR and REMD simulations, J. Mol. Biol., 391, 784-796, https://doi.org/10.1016/j.jmb.2009.06.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uversky, V. N., Li, J., and Fink, A. L. (2001) Evidence for a partially folded intermediate in α-synuclein fibril formation, J. Biol. Chem., 276, 10737-10744, https://doi.org/10.1074/jbc.M010907200.

    Article  CAS  PubMed  Google Scholar 

  20. Shtilerman, M. D., Ding, T. T., and Lansbury, P. T. (2002) Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry, 41, 3855-3860, https://doi.org/10.1021/bi0120906.

    Article  CAS  PubMed  Google Scholar 

  21. Munishkina, L. A., Phelan, C., Uversky, V. N., and Fink, A. L. (2003) Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes, Biochemistry, 42, 2720-2730, https://doi.org/10.1021/bi027166s.

    Article  CAS  PubMed  Google Scholar 

  22. Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M., and Ross, C. A. (1999) Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions, Nat. Genet., 22, 110-114, https://doi.org/10.1038/8820.

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira, N., Gram, H., Sorrentino, Z. A., Gregersen, E., Schmidt, S. I., Reimer, L., Betzer, C., Perez-Gozalbo, C., Beltoja, M., Nagaraj, M., Wang, J., Nowak, J. S., Dong, M., Willén, K., Cholak, E., Bjerregaard-Andersen, K., Mendez, N., Rabadia, P., Shahnawaz, M., Soto, C., Otzen, D. E., Akbey, Ü., Meyer, M., Giasson, B. I., Romero-Ramos, M., and Jensen, P. H. (2021) Multiple system atrophy-associated oligodendroglial protein p25α stimulates formation of novel α-synuclein strain with enhanced neurodegenerative potential, Acta Neuropathol., 142, 87-115, https://doi.org/10.1007/s00401-021-02316-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matiiv, A. B., Trubitsina, N. P., Matveenko, A. G., Barbitoff, Yu. A., Zhuravleva, G. A., and Bondarev, S. A. (2022) Structure and polymorphism of amyloid and amyloid-like aggregates, Biochemistry (Moscow), 87, 450-463, https://doi.org/10.1134/S0006297922050066.

    Article  CAS  PubMed  Google Scholar 

  25. Grey, M., Dunning, C. J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., and Linse, S. (2015) Acceleration of α-synuclein aggregation by exosomes, J. Biol. Chem., 290, 2969-2982, https://doi.org/10.1074/jbc.M114.585703.

    Article  CAS  PubMed  Google Scholar 

  26. Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., and Chilcote, T. J. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease, J. Biol. Chem., 281, 29739-29752, https://doi.org/10.1074/jbc.M600933200.

    Article  CAS  PubMed  Google Scholar 

  27. Paleologou, K. E., Oueslati, A., Shakked, G., Rospigliosi, C. C., Kim, H.-Y., Lamberto, G. R., Fernandez, C. O., Schmid, A., Chegini, F., Gai, W. P., Chiappe, D., Moniatte, M., Schneider, B. L., Aebischer, P., Eliezer, D., Zweckstetter, M., Masliah, E., and Lashuel, H. A. (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions, J. Neurosci., 30, 3184-3198, https://doi.org/10.1523/JNEUROSCI.5922-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tofaris, G. K., Razzaq, A., Ghetti, B., Lilley, K. S., and Spillantini, M. G. (2003) Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function, J. Biol. Chem., 278, 44405-44411, https://doi.org/10.1074/jbc.M308041200.

    Article  CAS  PubMed  Google Scholar 

  29. Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q., and Lee, V. M. (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions, Science, 290, 985-989, https://doi.org/10.1126/science.290.5493.985.

    Article  CAS  PubMed  Google Scholar 

  30. Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H.-H., Bossis, G., Urlaub, H., Zweckstetter, M., Kügler, S., Melchior, F., Bähr, M., and Weishaupt, J. H. (2011) Sumoylation inhibits α-synuclein aggregation and toxicity, J. Cell Biol., 194, 49-60, https://doi.org/10.1083/jcb.201010117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi, D.-H., Kim, Y.-J., Kim, Y.-G., Joh, T. H., Beal, M. F., and Kim, Y. S. (2011) Role of matrix metalloproteinase 3-mediated α-synuclein cleavage in dopaminergic cell death, J. Biol. Chem., 286, 14168-14177, https://doi.org/10.1074/jbc.M111.222430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kang, L., Janowska, M. K., Moriarty, G. M., and Baum, J. (2013) Mechanistic insight into the relationship between N-terminal acetylation of α-synuclein and fibril formation rates by NMR and fluorescence, PLoS One, 8, e75018, https://doi.org/10.1371/journal.pone.0075018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., and Iwatsubo, T. (2002) α-Synuclein is phosphorylated in synucleinopathy lesions, Nat. Cell Biol., 4, 160-164, https://doi.org/10.1038/ncb748.

    Article  CAS  PubMed  Google Scholar 

  34. Oueslati, A. (2016) Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J. Parkinsons. Dis., 6, 39-51, https://doi.org/10.3233/JPD-160779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalfó, E., Portero-Otín, M., Ayala, V., Martínez, A., Pamplona, R., and Ferrer, I. (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease, J. Neuropathol. Exp. Neurol., 64, 816-830, https://doi.org/10.1097/01.jnen.0000179050.54522.5a.

    Article  PubMed  Google Scholar 

  36. Castellani, R., Smith, M. A., Richey, P. L., and Perry, G. (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease, Brain Res., 737, 195-200, https://doi.org/10.1016/0006-8993(96)00729-9.

    Article  CAS  PubMed  Google Scholar 

  37. Vicente Miranda, H., Cássio, R., Correia-Guedes, L., Gomes, M. A., Chegão, A., Miranda, E., Soares, T., Coelho, M., Rosa, M. M., Ferreira, J. J., and Outeiro, T. F. (2017) Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson’s disease, Sci. Rep., 7, 13713, https://doi.org/10.1038/s41598-017-14175-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, D., Park, C. W., Paik, S. R., and Choi, K. Y. (2009) The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process, Biochim. Biophys. Acta, 1794, 421-430, https://doi.org/10.1016/j.bbapap.2008.11.016.

    Article  CAS  PubMed  Google Scholar 

  39. Barinova, K., Serebryakova, M., Sheval, E., Schmalhausen, E., and Muronetz, V. (2019) Modification by glyceraldehyde-3-phosphate prevents amyloid transformation of alpha-synuclein, Biochim. Biophys. Acta. Proteins Proteomics, 1867, 396-404, https://doi.org/10.1016/j.bbapap.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  40. Farzadfard, A., König, A., Petersen, S. V., Nielsen, J., Vasili, E., Dominguez-Meijide, A., Buell, A. K., Outeiro, T. F., and Otzen, D. E. (2022) Glycation modulates alpha-synuclein fibrillization kinetics: A sweet spot for inhibition, J. Biol. Chem., 298, 101848, https://doi.org/10.1016/j.jbc.2022.101848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chorell, E., Andersson, E., Evans, M. L., Jain, N., Götheson, A., Åden, J., Chapman, M. R., Almqvist, F., and Wittung-Stafshede, P. (2015) Bacterial chaperones CsgE and CsgC differentially modulate human α-synuclein amyloid formation via transient contacts, PLoS One, 10, e0140194, https://doi.org/10.1371/journal.pone.0140194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmad, A. (2010) DnaK/DnaJ/GrpE of Hsp70 system have differing effects on α-synuclein fibrillation involved in Parkinson’s disease, Int. J. Biol. Macromol., 46, 275-279, https://doi.org/10.1016/j.ijbiomac.2009.12.017.

    Article  CAS  PubMed  Google Scholar 

  43. Gerard, M., Debyser, Z., Desender, L., Kahle, P. J., Baert, J., Baekelandt, V., Engelborghs, Y. (2006) The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy, FASEB J., 20, 524-526, https://doi.org/10.1096/fj.05-5126fje.

    Article  CAS  PubMed  Google Scholar 

  44. Bose, A., and Beal, M. F. (2016) Mitochondrial dysfunction in Parkinson’s disease, J. Neurochem., 139, 216-231, https://doi.org/10.1111/jnc.13731.

    Article  CAS  PubMed  Google Scholar 

  45. Wong, Y. C., and Krainc, D. (2017) α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies, Nat. Med., 23, 1-13, https://doi.org/10.1038/nm.4269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Reitböck, P., Anichtchik, O., Bellucci, A., Iovino, M., Ballini, C., Fineberg, E., Ghetti, B., Della Corte, L., Spano, P., Tofaris, G. K., Goedert, M., and Spillantini, M. G. (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease, Brain, 133, 2032-2044, https://doi.org/10.1093/brain/awq132.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ghiglieri, V., Calabrese, V., and Calabresi, P. (2018) Alpha-synuclein: from early synaptic dysfunction to neurodegeneration, Front. Neurol., 9, 295, https://doi.org/10.3389/fneur.2018.00295.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Prusiner, S. B. (1987) Prions and neurodegenerative diseases, N. Engl. J. Med., 317, 1571-1581, https://doi.org/10.1056/NEJM198712173172505.

    Article  CAS  PubMed  Google Scholar 

  49. Prusiner, S. B. (1997) Prion diseases and the BSE crisis, Science., 278, 245-251, https://doi.org/10.1126/science.278.5336.245.

    Article  CAS  PubMed  Google Scholar 

  50. Ruiz-Riquelme, A., Lau, H. H. C., Stuart, E., Goczi, A. N., Wang, Z., Schmitt-Ulms, G., and Watts, J. C. (2018) Prion-like propagation of β-amyloid aggregates in the absence of APP overexpression, Acta Neuropathol. Commun., 6, 26, https://doi.org/10.1186/s40478-018-0529-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., and Tolnay, M. (2009) Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 11, 909-913, https://doi.org/10.1038/ncb1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pearce, M. M. P., and Kopito, R. R. (2018) Prion-like characteristics of polyglutamine-containing proteins, Cold Spring Harb. Perspect. Med., 8, a024257, https://doi.org/10.1101/cshperspect.a024257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Braak, H., Rüb, U., Gai, W. P., and Del Tredici, K. (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, J. Neural Transm., 110, 517-536, https://doi.org/10.1007/s00702-002-0808-2.

    Article  CAS  PubMed  Google Scholar 

  54. Braak, H., de Vos, R. A. I., Bohl, J., and Del Tredici, K. (2006) Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology, Neurosci. Lett., 396, 67-72, https://doi.org/10.1016/j.neulet.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  55. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B., and Olanow, C. W. (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease, Nat. Med., 14, 504-506, https://doi.org/10.1038/nm1747.

    Article  CAS  PubMed  Google Scholar 

  56. Li, J.-Y., Englund, E., Holton, J. L., Soulet, D., Hagell, P., Lees, A. J., Lashley, T., Quinn, N. P., Rehncrona, S., Björklund, A., Widner, H., Revesz, T., Lindvall, O., and Brundin, P. (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation, Nat. Med., 14, 501-503, https://doi.org/10.1038/nm1746.

    Article  CAS  PubMed  Google Scholar 

  57. Luk, K. C., Song, C., O’Brien, P., Stieber, A., Branch, J. R., Brunden, K. R., Trojanowski, J. Q., and Lee, V. M. (2009) Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells, Proc. Natl. Acad. Sci. USA, 106, 20051-20056, https://doi.org/10.1073/pnas.0908005106.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Desplats, P., Lee, H.-J., Bae, E.-J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S. J. (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein, Proc. Natl. Acad. Sci. USA, 106, 13010-13015, https://doi.org/10.1073/pnas.0903691106.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hansen, C., Angot, E., Bergström, A.-L., Steiner, J. A., Pieri, L., Paul, G., Outeiro, T. F., Melki, R., Kallunki, P., Fog, K., Li, J.-Y., and Brundin, P. (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, J. Clin. Invest., 121, 715-725, https://doi.org/10.1172/JCI43366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luk, K. C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J. Q., and Lee, V. M. (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice, Science, 338, 949-953, https://doi.org/10.1126/science.1227157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luk, K. C., Kehm, V. M., Zhang, B., O’Brien, P., Trojanowski, J. Q., and Lee, V. M. (2012) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice, J. Exp. Med., 209, 975-986, https://doi.org/10.1084/jem.20112457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., Mann, D. M., and Hasegawa, M. (2013) Prion-like spreading of pathological α-synuclein in brain, Brain, 136, 1128-1138, https://doi.org/10.1093/brain/awt037.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rey, N. L., Petit, G. H., Bousset, L., Melki, R., and Brundin, P. (2013) Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice, Acta Neuropathol., 126, 555-573, https://doi.org/10.1007/s00401-013-1160-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chistiakov, D. A., and Chistiakov, A. A. (2017) α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters, Acta Neurol. Belg., 117, 43-51, https://doi.org/10.1007/s13760-016-0679-1.

    Article  PubMed  Google Scholar 

  65. Vargas, J. Y., Grudina, C., and Zurzolo, C. (2019) The prion-like spreading of α-synuclein: from in vitro to in vivo models of Parkinson’s disease, Ageing Res. Rev., 50, 89-101, https://doi.org/10.1016/j.arr.2019.01.012.

    Article  CAS  PubMed  Google Scholar 

  66. Hardy, J., and Gwinn-Hardy, K. (1998) Genetic classification of primary neurodegenerative disease, Science, 282, 1075-1079, https://doi.org/10.1126/science.282.5391.1075.

    Article  CAS  PubMed  Google Scholar 

  67. Goedert, M., and Spillantini, M. G. (1998) Lewy body diseases and multiple system atrophy as α-synucleinopathies, Mol. Psychiatry, 3, 462-465, https://doi.org/10.1038/sj.mp.4000458.

    Article  CAS  PubMed  Google Scholar 

  68. Dickson, D. W., Lin, W., Liu, W. K., and Yen, S. H. (1999) Multiple system atrophy: a sporadic synucleinopathy, Brain Pathol., 9, 721-732, https://doi.org/10.1111/j.1750-3639.1999.tb00553.x.

    Article  CAS  PubMed  Google Scholar 

  69. Gilman, S., Wenning, G. K., Low, P. A., Brooks, D. J., Mathias, C. J., Trojanowski, J. Q., Wood, N. W., Colosimo, C., Dürr, A., Fowler, C. J., Kaufmann, H., Klockgether, T., Lees, A., Poewe, W., Quinn, N., Revesz, T., Robertson, D., Sandroni, P., Seppi, K., and Vidailhet, M. (2008) Second consensus statement on the diagnosis of multiple system atrophy, Neurology, 71, 670-676, https://doi.org/10.1212/01.wnl.0000324625.00404.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Erskine, D., and Attems, J. (2021) Insights into Lewy body disease from rare neurometabolic disorders, J. Neural Transm., 128, 1567-1575, https://doi.org/10.1007/s00702-021-02355-7.

    Article  PubMed  Google Scholar 

  71. Goedert, M., Jakes, R., and Spillantini, M. G. (2017) The synucleinopathies: twenty years on, J. Parkinsons. Dis., 7, S51-S69, https://doi.org/10.3233/JPD-179005.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Newell, K. L., Boyer, P., Gomez-Tortosa, E., Hobbs, W., Hedley-Whyte, E. T., Vonsattel, J. P., and Hyman, B. T. (1999) α-Synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury, J. Neuropathol. Exp. Neurol., 58, 1263-1268, https://doi.org/10.1097/00005072-199912000-00007.

    Article  CAS  PubMed  Google Scholar 

  73. Szeto, J. Y. Y., Walton, C. C., Rizos, A., Martinez-Martin, P., Halliday, G. M., Naismith, S. L., Chaudhuri, K. R., and Lewis, S. J. G. (2020) Dementia in long-term Parkinson’s disease patients: a multicentre retrospective study, NPJ Park. Dis., 6, 2, https://doi.org/10.1038/s41531-019-0106-4.

    Article  Google Scholar 

  74. McKeith, I. G., Boeve, B. F., Dickson, D. W., Halliday, G., Taylor, J.-P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C. G., Bayston, A., Beach, T. G., Blanc, F., Bohnen, N., Bonanni, L., Bras, J., Brundin, P., Burn, D., Chen-Plotkin, A., Duda, J. E., El-Agnaf, O., Feldman, H., Ferman, T. J., Ffytche, D., Fujishiro, H., Galasko, D., Goldman, J. G., Gomperts, S. N., Graff-Radford, N. R., Honig, L. S., Iranzo, A., Kantarci, K., Kaufer, D., Kukull, W., Lee, V. M. Y., Leverenz, J. B., Lewis, S., Lippa, C., Lunde, A., Masellis, M., Masliah, E., McLean, P., Mollenhauer, B., Montine, T. J., Moreno, E., Mori, E., Murray, M., O'Brien, J. T., Orimo, S., Postuma, R. B., Ramaswamy, S., Ross, O. A., Salmon, D. P., Singleton, A., Taylor, A., Thomas, A., Tiraboschi, P., Toledo, J. B., Trojanowski, J. Q., Tsuang, D., Walker, Z., Yamada, M., and Kosaka, K. (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium, Neurology, 89, 88-100, https://doi.org/10.1212/WNL.0000000000004058.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fahn, S. (2003) Description of Parkinson’s disease as a clinical syndrome, Ann. N. Y. Acad. Sci., 991, 1-14, https://doi.org/10.1111/j.1749-6632.2003.tb07458.x.

    Article  CAS  PubMed  Google Scholar 

  76. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease, Science, 276, 2045-2047, https://doi.org/10.1126/science.276.5321.2045.

    Article  CAS  PubMed  Google Scholar 

  77. Pasanen, P., Myllykangas, L., Siitonen, M., Raunio, A., Kaakkola, S., Lyytinen, J., Tienari, P. J., Pöyhönen, M., and Paetau, A. (2014) Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology, Neurobiol. Aging, 35, 2180.e1-2180.e5, https://doi.org/10.1016/j.neurobiolaging.2014.03.024.

    Article  CAS  PubMed  Google Scholar 

  78. Zarranz, J. J., Alegre, J., Gómez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atarés, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Muñoz, D. G., and de Yebenes, J. G. (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol., 55, 164-173, https://doi.org/10.1002/ana.10795.

    Article  CAS  PubMed  Google Scholar 

  79. Krüger, R., Kuhn, W., Müller, T., Woitalla, D., Graeber, M., Kösel, S., Przuntek, H., Epplen, J. T., Schöls, L., and Riess, O. (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease, Nat. Genet., 18, 106-108, https://doi.org/10.1038/ng0298-106.

    Article  PubMed  Google Scholar 

  80. Chartier-Harlin, M.-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., and Destée, A. (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet, 364, 1167-1169, https://doi.org/10.1016/S0140-6736(04)17103-1.

    Article  CAS  PubMed  Google Scholar 

  81. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003) α-Synuclein locus triplication causes Parkinson’s disease, Science, 302, 841, https://doi.org/10.1126/science.1090278.

    Article  CAS  PubMed  Google Scholar 

  82. Herrick, M. K., and Tansey, M. G. (2021) Is LRRK2 the missing link between inflammatory bowel disease and Parkinson’s disease? NPJ Park. Dis., 7, 26, https://doi.org/10.1038/s41531-021-00170-1.

    Article  CAS  Google Scholar 

  83. Herrick, M. K., and Tansey, M. G. (2019) Infection triggers symptoms similar to those of Parkinson’s disease in mice lacking PINK1 protein, Nature, 571, 481-482, https://doi.org/10.1038/d41586-019-02094-6.

    Article  CAS  PubMed  Google Scholar 

  84. Schapira, A. H. V., Chaudhuri, K. R., and Jenner, P. (2017) Non-motor features of Parkinson disease, Nat. Rev. Neurosci., 18, 435-450, https://doi.org/10.1038/nrn.2017.62.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, T.-M., Yu, S.-Y., Guo, P., Du, Y., Hu, Y., Piao, Y.-S., Zuo, L.-J., Lian, T.-H., Wang, R.-D., Yu, Q.-J., Jin, Z., and Zhang, W. (2016) Nonmotor symptoms in patients with Parkinson disease: A cross-sectional observational study, Medicine (Baltimore), 95, e5400, https://doi.org/10.1097/MD.0000000000005400.

    Article  PubMed  Google Scholar 

  86. Zuo, L.-J., Yu, S.-Y., Hu, Y., Wang, F., Piao, Y.-S., Lian, T.-H., Yu, Q.-J., Wang, R.-D., Li, L.-X., Guo, P., Du, Y., Zhu, R.-Y., Jin, Z., Wang, Y.-J., Wang, X.-M., Chan, P., Chen, S.-D., Wang, Y.-J., and Zhang, W. (2016) Serotonergic dysfunctions and abnormal iron metabolism: relevant to mental fatigue of Parkinson’s disease, Sci. Rep., 6, 19, https://doi.org/10.1038/s41598-016-0018-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Borghammer, P. (2023) The brain-first vs. body-first model of Parkinson’s disease with comparison to alternative models, J. Neural Transm., 130, 737-753, https://doi.org/10.1007/s00702-023-02633-6.

    Article  PubMed  Google Scholar 

  88. Tan, A. H., Mahadeva, S., Thalha, A. M., Gibson, P. R., Kiew, C. K., Yeat, C. M., Ng, S. W., Ang, S. P., Chow, S. K., Tan, C. T., Yong, H. S., Marras, C., Fox, S. H., and Lim, S. Y. (2014) Small intestinal bacterial overgrowth in Parkinson’s disease, Parkinsonism Relat. Disord., 20, 535-540, https://doi.org/10.1016/j.parkreldis.2014.02.019.

    Article  PubMed  Google Scholar 

  89. Li, D., Ren, T., Li, H., Liao, G., and Zhang, X. (2022) Porphyromonas gingivalis: A key role in Parkinson’s disease with cognitive impairment? Front. Neurol., 13, 945523, https://doi.org/10.3389/fneur.2022.945523.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berthouzoz, E., Lazarevic, V., Zekeridou, A., Castro, M., Debove, I., Aybek, S., Schrenzel, J., Burkhard, P. R., and Fleury, V. (2023) Oral and intestinal dysbiosis in Parkinson’s disease, Rev. Neurol. (Paris), 179, 937-946, https://doi.org/10.1016/j.neurol.2022.12.010.

    Article  CAS  PubMed  Google Scholar 

  91. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, G. S., Selvin, J., Souza, R. S. C., van Overbeek, L., Singh, B. K., Wagner, M., Walsh, A., Sessitsch, A., and Schloter, M. (2020) Microbiome definition re-visited: old concepts and new challenges, Microbiome, 8, 103, https://doi.org/10.1186/s40168-020-00875-0.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gilbert, J. A., and Lynch, S. V. (2019) Community ecology as a framework for human microbiome research, Nat. Med., 25, 884-889, https://doi.org/10.1038/s41591-019-0464-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hou, K., Wu, Z.-X., Chen, X.-Y., Wang, J.-Q., Zhang, D., Xiao, C., Zhu, D., Koya, J. B., Wei, L., Li, J., and Chen, Z. S. (2022) Microbiota in health and diseases, Signal Transduct. Target. Ther., 7, 135, https://doi.org/10.1038/s41392-022-00974-4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Forster, S. C., Kumar, N., Anonye, B. O., Almeida, A., Viciani, E., Stares, M. D., Dunn, M., Mkandawire, T. T., Zhu, A., Shao, Y., Pike, L. J., Louie, T., Browne, H. P., Mitchell, A. L., Neville, B. A., Finn, R. D., and Lawley, T. D. (2019) A human gut bacterial genome and culture collection for improved metagenomic analyses, Nat. Biotechnol., 37, 186-192, https://doi.org/10.1038/s41587-018-0009-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B., Tarkowska, A., Lawley, T. D., and Finn, R. D. (2019) A new genomic blueprint of the human gut microbiota, Nature, 568, 499-504, https://doi.org/10.1038/s41586-019-0965-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zou, Y., Xue, W., Luo, G., Deng, Z., Qin, P., Guo, R., Sun, H., Xia, Y., Liang, S., Dai, Y., Wan, D., Jiang, R., Su, L., Feng, Q., Jie, Z., Guo, T., Xia, Z., Liu, C., Yu, J., Lin, Y., Tang, S., Huo, G., Xu, X., Hou, Y., Liu, X., Wang, J., Yang, H., Kristiansen, K., Li, J., Jia, H., and Xiao, L. (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses, Nat. Biotechnol., 37, 179-185, https://doi.org/10.1038/s41587-018-0008-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leviatan, S., Shoer, S., Rothschild, D., Gorodetski, M., and Segal, E. (2022) An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species, Nat. Commun., 13, 3863, https://doi.org/10.1038/s41467-022-31502-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, J., Pu, J., Lu, S., Bai, X., Wu, Y., Jin, D., Cheng, Y., Zhang, G., Zhu, W., Luo, X., Rosselló-Móra, R., and Xu, J. (2020) Species-level analysis of human gut microbiota mith metataxonomics, Front. Microbiol., 11, 2029, https://doi.org/10.3389/fmicb.2020.02029.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., MetaHIT Consortium, Bork, P., Ehrlich, S. D., and Wang, J. (2010) A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 464, 59-65, https://doi.org/10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rajilić-Stojanović, M., and de Vos, W. M. (2014) The first 1000 cultured species of the human gastrointestinal microbiota, FEMS Microbiol. Rev., 38, 996-1047, https://doi.org/10.1111/1574-6976.12075.

    Article  CAS  PubMed  Google Scholar 

  101. Costea, P. I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M. J., Bushman, F. D., de Vos, W. M., Ehrlich, S. D., Fraser, C. M., Hattori, M., Huttenhower, C., Jeffery, I. B., Knights, D., Lewis, J. D., Ley, R. E., Ochman, H., O'Toole, P. W., Quince, C., Relman, D. A., Shanahan, F., Sunagawa, S., Wang, J., Weinstock, G. M., Wu, G. D., Zeller, G., Zhao, L., Raes, J., Knight, R., and Bork, P. (2017) Enterotypes in the landscape of gut microbial community composition, Nat. Microbiol., 3, 8-16, https://doi.org/10.1038/s41564-017-0072-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Laterza, L., Rizzatti, G., Gaetani, E., Chiusolo, P., and Gasbarrini, A. (2016) The gut microbiota and immune system relationship in human graft-versus-host disease, Mediterr. J. Hematol. Infect. Dis., 8, e2016025, https://doi.org/10.4084/mjhid.2016.025.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., and Ley, R. E. (2014) Human genetics shape the gut microbiome, Cell, 159, 789-799, https://doi.org/10.1016/j.cell.2014.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A. V., Falony, G., Vieira-Silva, S., Wang, J., Imhann, F., Brandsma, E., Jankipersadsing, S. A., Joossens, M., Cenit, M. C., Deelen, P., and Swertz, M. A. (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity, Science, 352, 565-569, https://doi.org/10.1126/science.aad3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Auchtung, T. A., Fofanova, T. Y., Stewart, C. J., Nash, A. K., Wong, M. C., Gesell, J. R., Auchtung, J. M., Ajami, N. J., and Petrosino, J. F. (2018) Investigating colonization of the healthy adult gastrointestinal tract by fungi, mSphere, 3, e00092-18, https://doi.org/10.1128/mSphere.00092-18.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Miller, T. L., Wolin, M. J., Zhao, H. X., and Bryant, M. P. (1986) Characteristics of methanogens isolated from bovine rumen, Appl. Environ. Microbiol., 51, 201-202, https://doi.org/10.1128/aem.51.1.201-202.1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dridi, B., Henry, M., El Khéchine, A., Raoult, D., and Drancourt, M. (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol, PLoS One, 4, e7063, https://doi.org/10.1371/journal.pone.0007063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hooks, K. B., and O’Malley, M. A. (2017) Dysbiosis and its discontents, MBio, 8, e01492-17, https://doi.org/10.1128/mBio.01492-17.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Larsen, O. F. A., and Claassen, E. (2018) The mechanistic link between health and gut microbiota diversity, Sci. Rep., 8, 2183, https://doi.org/10.1038/s41598-018-20141-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fan, Y., and Pedersen, O. (2021) Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol., 19, 55-71, https://doi.org/10.1038/s41579-020-0433-9.

    Article  CAS  PubMed  Google Scholar 

  111. Hasan, N., and Yang, H. (2019) Factors affecting the composition of the gut microbiota, and its modulation, PeerJ, 7, e7502, https://doi.org/10.7717/peerj.7502.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and Gordon, J. I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 444, 1027-1031, https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  113. Nieuwdorp, M., Gilijamse, P. W., Pai, N., and Kaplan, L. M. (2014) Role of the microbiome in energy regulation and metabolism, Gastroenterology, 146, 1525-1533, https://doi.org/10.1053/j.gastro.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  114. Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., Giustina, A., and Gazzaruso, C. (2018) Microbiota and metabolic diseases, Endocrine, 61, 357-371, https://doi.org/10.1007/s12020-018-1605-5.

    Article  CAS  PubMed  Google Scholar 

  115. Owaga, E., Hsieh, R.-H., Mugendi, B., Masuku, S., Shih, C.-K., and Chang, J. S. (2015) Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases, Int. J. Mol. Sci., 16, 20841-20858, https://doi.org/10.3390/ijms160920841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sekirov, I., Russell, S. L., Antunes, L. C. M., and Finlay, B. B. (2010) Gut microbiota in health and disease, Physiol. Rev., 90, 859-904, https://doi.org/10.1152/physrev.00045.2009.

    Article  CAS  PubMed  Google Scholar 

  117. Salzman, N. H., Hung, K., Haribhai, D., Chu, H., Karlsson-Sjöberg, J., Amir, E., Teggatz, P., Barman, M., Hayward, M., Eastwood, D., Stoel, M., Zhou, Y., Sodergren, E., Weinstock, G. M., Bevins, C. L., Williams, C. B., and Bos, N. A. (2010) Enteric defensins are essential regulators of intestinal microbial ecology, Nat. Immunol., 11, 76-82, https://doi.org/10.1038/ni.1825.

    Article  CAS  PubMed  Google Scholar 

  118. Helgeland, L., Dissen, E., Dai, K.-Z., Midtvedt, T., Brandtzaeg, P., and Vaage, J. T. (2004) Microbial colonization induces oligoclonal expansions of intraepithelial CD8 T cells in the gut, Eur. J. Immunol., 34, 3389-3400, https://doi.org/10.1002/eji.200425122.

    Article  CAS  PubMed  Google Scholar 

  119. Rutsch, A., Kantsjö, J. B., and Ronchi, F. (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology, Front. Immunol., 11, 604179, https://doi.org/10.3389/fimmu.2020.604179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grider, J. R., and Piland, B. E. (2007) The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF, Am. J. Physiol. Liver Physiol., 292, G429-G437, https://doi.org/10.1152/ajpgi.00376.2006.

    Article  CAS  Google Scholar 

  121. Mittal, R., Debs, L. H., Patel, A. P., Nguyen, D., Patel, K., O'Connor, G., Grati, M., Mittal, J., Yan, D., Eshraghi, A. A., Deo, S. K., Daunert, S., and Liu, X. Z. (2017) Neurotransmitters: the critical modulators regulating gut-brain axis, J. Cell. Physiol., 232, 2359-2372, https://doi.org/10.1002/jcp.25518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A., and Tsujimoto, G. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41), Proc. Natl. Acad. Sci. USA, 108, 8030-8035, https://doi.org/10.1073/pnas.1016088108.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kunze, W. A., Mao, Y., Wang, B., Huizinga, J. D., Ma, X., Forsythe, P., and Bienenstock, J. (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening, J. Cell. Mol. Med., 13, 2261-2270, https://doi.org/10.1111/j.1582-4934.2009.00686.x.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dubinsky, M. C., Lin, Y.-C., Dutridge, D., Picornell, Y., Landers, C. J., Farrior, S., Wrobel, I., Quiros, A., Vasiliauskas, E. A., Grill, B., Israel, D., Bahar, R., Christie, D., Wahbeh, G., Silber, G., Dallazadeh, S., Shah, P., Thomas, D., Kelts, D., Hershberg, R. M., Elson, C. O., Targan, S. R., Taylor, K. D., Rotter, J. I., and Yang, H. (2006) Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression, Am. J. Gastroenterol., 101, 360-367, https://doi.org/10.1111/j.1572-0241.2006.00456.x.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Frank, D. N., St. Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., and Pace, N. R. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc. Natl. Acad. Sci. USA, 104, 13780-13785, https://doi.org/10.1073/pnas.0706625104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. O’Keefe, S. J. D., Ou, J., Aufreiter, S., O’Connor, D., Sharma, S., Sepulveda, J., Fukuwatari, T., Shibata, K., and Mawhinney, T. (2009) Products of the colonic microbiota mediate the effects of diet on colon cancer risk, J. Nutr., 139, 2044-2048, https://doi.org/10.3945/jn.109.104380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu, X., Wang, T., and Jin, F. (2016) Alzheimer’s disease and gut microbiota, Sci. China Life Sci., 59, 1006-1023, https://doi.org/10.1007/s11427-016-5083-9.

    Article  CAS  PubMed  Google Scholar 

  128. Komaroff, A. L. (2017) The microbiome and risk for obesity and diabetes, JAMA, 317, 355-356, https://doi.org/10.1001/jama.2016.20099.

    Article  PubMed  Google Scholar 

  129. Barlow, G. M., Yu, A., and Mathur, R. (2015) Role of the gut microbiome in obesity and diabetes mellitus, Nutr. Clin. Pract., 30, 787-797, https://doi.org/10.1177/0884533615609896.

    Article  CAS  PubMed  Google Scholar 

  130. Scher, J. U., Sczesnak, A., Longman, R. S., Segata, N., Ubeda, C., Bielski, C., Rostron, T., Cerundolo, V., Pamer, E. G., Abramson, S. B., Huttenhower, C., and Littman, D. R. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, Elife, 2, e01202, https://doi.org/10.7554/eLife.01202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang, C., Li, G., Huang, P., Liu, Z., and Zhao, B. (2017) The gut microbiota and Alzheimer’s disease, J. Alzheimer’s Dis., 58, 1-15, https://doi.org/10.3233/JAD-161141.

    Article  CAS  Google Scholar 

  132. Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U. P., Paghera, B., Muscio, C., Bianchetti, A., Volta, G. D., Turla, M., Cotelli, M. S., Gennuso, M., Prelle, A., Zanetti, O., Lussignoli, G., Mirabile, D., Bellandi, D., Gentile, S., Belotti, G., Villani, D., Harach, T., Bolmont, T., Padovani, A., Boccardi, M., and Frisoni, G. B. (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly, Neurobiol. Aging, 49, 60-68, https://doi.org/10.1016/j.neurobiolaging.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  133. Pistollato, F., Sumalla Cano, S., Elio, I., Masias Vergara, M., Giampieri, F., and Battino, M. (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease, Nutr. Rev., 74, 624-634, https://doi.org/10.1093/nutrit/nuw023.

    Article  PubMed  Google Scholar 

  134. Asti, A., and Gioglio, L. (2014) Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J. Alzheimer’s Dis., 39, 169-179, https://doi.org/10.3233/JAD-131394.

    Article  CAS  Google Scholar 

  135. Mancuso, C., and Santangelo, R. (2018) Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence, Pharmacol. Res., 129, 329-336, https://doi.org/10.1016/j.phrs.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  136. Mowry, E. M., and Glenn, J. D. (2018) The dynamics of the gut microbiome in multiple sclerosis in relation to disease, Neurol. Clin., 36, 185-196, https://doi.org/10.1016/j.ncl.2017.08.008.

    Article  PubMed  Google Scholar 

  137. Shahi, S. K., Freedman, S. N., and Mangalam, A. K. (2017) Gut microbiome in multiple sclerosis: The players involved and the roles they play, Gut Microbes, 8, 607-615, https://doi.org/10.1080/19490976.2017.1349041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fang, X. (2016) Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis, Int. J. Neurosci., 126, 771-776, https://doi.org/10.3109/00207454.2015.1096271.

    Article  CAS  PubMed  Google Scholar 

  139. Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wie, H., and Chen, T. (2016) Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing, Front. Microbiol., 7, 1479, https://doi.org/10.3389/fmicb.2016.01479.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu, S., Yi, J., Zhang, Y., Zhou, J., and Sun, J. (2015) Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model, Physiol. Rep., 3, e12356, https://doi.org/10.14814/phy2.12356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017) Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis, Clin. Ther., 39, 322-336, https://doi.org/10.1016/j.clinthera.2016.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., and Auvinen, P. (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype, Mov. Disord., 30, 350-358, https://doi.org/10.1002/mds.26069.

    Article  PubMed  Google Scholar 

  143. Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., Mutlu, E., and Shannon, K. M. (2015) Colonic bacterial composition in Parkinson’s disease, Mov. Disord., 30, 1351-1360, https://doi.org/10.1002/mds.26307.

    Article  CAS  PubMed  Google Scholar 

  144. Hasegawa, S., Goto, S., Tsuji, H., Okuno, T., Asahara, T., Nomoto, K., Shibata, A., Fujisawa, Y., Minato, T., Okamoto, A., Ohno, K., and Hirayama, M. (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease, PLoS One, 10, e0142164, https://doi.org/10.1371/journal.pone.0142164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Petrov, V. A., Saltykova, I. V., Zhukova, I. A., Alifirova, V. M., Zhukova, N. G., Dorofeeva, Y. B., Tyakht, A. V., Kovarsky, B. A., Alekseev, D. G., Kostryukova, E. S., Mironova, Y. S., Izhboldina, O. P., Nikitina, M. A., Perevozchikova, T. V., Fait, E. A., Babenko, V. V., Vakhitova, M. T., Govorun, V. M., and Sazonov, A. E. (2017) Analysis of gut microbiota in patients with Parkinson’s disease, Bull. Exp. Biol. Med., 162, 734-737, https://doi.org/10.1007/s10517-017-3700-7.

    Article  CAS  PubMed  Google Scholar 

  146. Li, C., Cui, L., Yang, Y., Miao, J., Zhao, X., Zhang, J., Cui, G., and Zhang, Y. (2019) Gut microbiota differs between Parkinson’s disease patients and healthy controls in Northeast China, Front. Mol. Neurosci., 12, 171, https://doi.org/10.3389/fnmol.2019.00171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Qian, Y., Yang, X., Xu, S., Huang, P., Li, B., Du, J., He, Y., Su, B., Xu, L. M., Wang, L., Huang, R., Chen, S., and Xiao, Q. (2020) Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease, Brain, 143, 2474-2489, https://doi.org/10.1093/brain/awaa201.

    Article  PubMed  Google Scholar 

  148. Bedarf, J. R., Hildebrand, F., Coelho, L. P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., and Wüllner, U. (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients, Genome Med., 9, 39, https://doi.org/10.1186/s13073-017-0428-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Toh, T. S., Chong, C. W., Lim, S.-Y., Bowman, J., Cirstea, M., Lin, C. H., Chen, C. C., Appel-Cresswell, S., Finlay, B. B., and Tan, A. H. (2022) Gut microbiome in Parkinson’s disease: new insights from meta-analysis, Parkinsonism Relat. Disord., 94, 1-9, https://doi.org/10.1016/j.parkreldis.2021.11.017.

    Article  PubMed  Google Scholar 

  150. Vascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V., Sarchioto, M., Oppo, V., Simola, N., Morelli, M., Santoru, M. L., Atzori, L., Melis, M., Cossu, G., and Manzin, A. (2020) Gut microbiota and metabolome alterations associated with Parkinson’s disease, mSystems, 5, e00561-20, https://doi.org/10.1128/mSystems.00561-20.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Flint, H. J., Duncan, S. H., Scott, K. P., and Louis, P. (2015) Links between diet, gut microbiota composition and gut metabolism, Proc. Nutr. Soc., 74, 13-22, https://doi.org/10.1017/S0029665114001463.

    Article  CAS  PubMed  Google Scholar 

  152. Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E., and Ikuta, F. (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses, Acta Neuropathol., 76, 217-221, https://doi.org/10.1007/BF00687767.

    Article  CAS  PubMed  Google Scholar 

  153. Wakabayashi, K., Takahashi, H., Ohama, E., and Ikuta, F. (1990) Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system, Acta Neuropathol., 79, 581-583, https://doi.org/10.1007/BF00294234.

    Article  CAS  PubMed  Google Scholar 

  154. Phillips, R. J., Walter, G. C., Wilder, S. L., Baronowsky, E. A., and Powley, T. L. (2008) Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience, 153, 733-750, https://doi.org/10.1016/j.neuroscience.2008.02.074.

    Article  CAS  PubMed  Google Scholar 

  155. Lebouvier, T., Neunlist, M., Bruley des Varannes, S., Coron, E., Drouard, A., N'Guyen, J. M., Chaumette, T., Tasselli, M., Paillusson, S., Flamand, M., Galmiche, J. P., Damier, P., and Derkinderen, P. (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms, PLoS One, 5, e12728, https://doi.org/10.1371/journal.pone.0012728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shannon, K. M., Keshavarzian, A., Mutlu, E., Dodiya, H. B., Daian, D., Jaglin, J. A., Kordower, J. H. (2012) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease, Mov. Disord., 27, 709-715, https://doi.org/10.1002/mds.23838.

    Article  PubMed  Google Scholar 

  157. Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S., and Kordower, J. H. (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases, Mov. Disord., 27, 716-719, https://doi.org/10.1002/mds.25020.

    Article  PubMed  Google Scholar 

  158. Svensson, E., Horváth-Puhó, E., Thomsen, R. W., Djurhuus, J. C., Pedersen, L., Borghammer, P., and Sørensen, H. T. (2015) Vagotomy and subsequent risk of Parkinson’s disease, Ann. Neurol., 78, 522-529, https://doi.org/10.1002/ana.24448.

    Article  PubMed  Google Scholar 

  159. Holmqvist, S., Chutna, O., Bousset, L., Aldrin-Kirk, P., Li, W., Björklund, T., Wang, Z. Y., Roybon, L., Melki, R., and Li, J. Y. (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats, Acta Neuropathol., 128, 805-820, https://doi.org/10.1007/s00401-014-1343-6.

    Article  PubMed  Google Scholar 

  160. Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M. G., Reichmann, H., and Funk, R. H. (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice, PLoS One, 5, e8762, https://doi.org/10.1371/journal.pone.0008762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hawkes, C. H., Del Tredici, K., and Braak, H. (2007) Parkinson’s disease: a dual-hit hypothesis, Neuropathol. Appl. Neurobiol., 33, 599-614, https://doi.org/10.1111/j.1365-2990.2007.00874.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Beach, T. G., Adler, C. H., Sue, L. I., Shill, H. A., Driver-Dunckley, E., Mehta, S. H., Intorcia, A. J., Glass, M. J., Walker, J. E., Arce, R., Nelson, C. M., and Serrano, G. E. (2021) Vagus nerve and stomach synucleinopathy in Parkinson’s disease, incidental Lewy body disease, and normal elderly subjects: evidence against the “body-first” hypothesis, J. Parkinsons. Dis., 11, 1833-1843, https://doi.org/10.3233/JPD-212733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, E.-J., Woo, M.-S., Moon, P.-G., Baek, M.-C., Choi, I.-Y., Kim, W.-K., Junn, E., and Kim, H.-S. (2010) α-Synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1, J. Immunol., 185, 615-623, https://doi.org/10.4049/jimmunol.0903480.

    Article  CAS  PubMed  Google Scholar 

  164. Couch, Y., Alvarez-Erviti, L., Sibson, N. R., Wood, M. J. A., and Anthony, D. C. (2011) The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation, J. Neuroinflammation, 8, 166, https://doi.org/10.1186/1742-2094-8-166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stolzenberg, E., Berry, D., Yang, D., Lee, E. Y., Kroemer, A., Kaufman, S., Wong, G. C. L., Oppenheim, J. J., Sen, S., Fishbein, T., Bax, A., Harris, B., Barbut, D., and Zasloff, M. A. (2017) A Role for neuronal alpha-synuclein in gastrointestinal immunity, J. Innate Immun., 9, 456-463, https://doi.org/10.1159/000477990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bendor, J. T., Logan, T. P., and Edwards, R. H. (2013) The function of α-synuclein, Neuron, 79, 1044-1066, https://doi.org/10.1016/j.neuron.2013.09.004.

    Article  CAS  PubMed  Google Scholar 

  167. Béraud, D., Twomey, M., Bloom, B., Mittereder, A., Ton, V., Neitzke, K., Chasovskikh, S., Mhyre, T. R., and Maguire-Zeiss, K. A. (2011) α-Synuclein slters Toll-like receptor expression, Front. Neurosci., 5, 80, https://doi.org/10.3389/fnins.2011.00080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Olivares, D., Huang, X., Branden, L., Greig, N. H., and Rogers, J. T. (2009) Physiological and pathological role of alpha-synuclein in Parkinson’s disease through iron mediated oxidative stress; the role of a putative iron-responsive element, Int. J. Mol. Sci., 10, 1226-1260, https://doi.org/10.3390/ijms10031226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gao, H.-M., Zhang, F., Zhou, H., Kam, W., Wilson, B., and Hong, J. S. (2011) Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease, Environ. Health Perspect., 119, 807-814, https://doi.org/10.1289/ehp.1003013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gatto, N. M., Cockburn, M., Bronstein, J., Manthripragada, A. D., and Ritz, B. (2009) Well-water consumption and Parkinson’s disease in rural California, Environ. Health Perspect., 117, 1912-1918, https://doi.org/10.1289/ehp.0900852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Freire, C., and Koifman, S. (2012) Pesticide exposure and Parkinson’s disease: epidemiological evidence of association, Neurotoxicology, 33, 947-971, https://doi.org/10.1016/j.neuro.2012.05.011.

    Article  CAS  PubMed  Google Scholar 

  172. Blesa, J., Phani, S., Jackson-Lewis, V., and Przedborski, S. (2012) Classic and new animal models of Parkinson’s disease, J. Biomed. Biotechnol., 2012, 845618, https://doi.org/10.1155/2012/845618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P., Knight, R., and Payami, H. (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome, Mov. Disord., 32, 739-749, https://doi.org/10.1002/mds.26942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ternák, G., Kuti, D., and Kovács, K. J. (2020) Dysbiosis in Parkinson’s disease might be triggered by certain antibiotics, Med. Hypotheses, 137, 109564, https://doi.org/10.1016/j.mehy.2020.109564.

    Article  CAS  PubMed  Google Scholar 

  175. Nunes-Costa, D., Magalhães, J. D., G-Fernandes, M., Cardoso, S. M., and Empadinhas, N. (2020) Microbial BMAA and the pathway for Parkinson’s disease neurodegeneration, Front. Aging Neurosci., 12, 26, https://doi.org/10.3389/fnagi.2020.00026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., and Mazmanian, S. K. (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease, Cell, 167, 1469-1480, https://doi.org/10.1016/j.cell.2016.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sun, M.-F., and Shen, Y.-Q. (2018) Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s disease, Ageing Res. Rev., 45, 53-61, https://doi.org/10.1016/j.arr.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  178. Bondarev, S. A., Antonets, K. S., Kajava, A. V., Nizhnikov, A. A., and Zhouravleva, G. A. (2018) Protein co-aggregation related to amyloids: methods of investigation, diversity, and classification, Int. J. Mol. Sci., 19, 2292, https://doi.org/10.3390/ijms19082292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K., and Wu, H. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, 150, 339-350, https://doi.org/10.1016/j.cell.2012.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mompeán, M., Li, W., Li, J., Laage, S., Siemer, A. B., Bozkurt, G., Wu, H., and McDermott, A. E. (2018) The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex, Cell, 173, 1244-1253, https://doi.org/10.1016/j.cell.2018.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kajava, A. V., Klopffleisch, K., Chen, S., and Hofmann, K. (2014) Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s, Sci. Rep., 4, 7436, https://doi.org/10.1038/srep07436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Spires-Jones, T. L., Attems, J., and Thal, D. R. (2017) Interactions of pathological proteins in neurodegenerative diseases, Acta Neuropathol., 134, 187-205, https://doi.org/10.1007/s00401-017-1709-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hu, R., Zhang, M., Chen, H., Jiang, B., and Zheng, J. (2015) Cross-seeding interaction between β-Amyloid and human islet amyloid polypeptide, ACS Chem. Neurosci., 6, 1759-1768, https://doi.org/10.1021/acschemneuro.5b00192.

    Article  CAS  PubMed  Google Scholar 

  184. Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers, Nature, 457, 1128-1132, https://doi.org/10.1038/nature07761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rubel, A. A., Ryzhova, T. A., Antonets, K. S., Chernoff, Y. O., and Galkin, A. (2013) Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay, Prion, 7, 469-476, https://doi.org/10.4161/pri.26867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ono, K., Takahashi, R., Ikeda, T., and Yamada, M. (2012) Cross-seeding effects of amyloid β-protein and α-synuclein, J. Neurochem., 122, 883-890, https://doi.org/10.1111/j.1471-4159.2012.07847.x.

    Article  CAS  PubMed  Google Scholar 

  187. Horvath, I., Rocha, S., and Wittung-Stafshede, P. (2018) In vitro analysis of α-synuclein amyloid formation and cross-reactivity, Methods Mol. Biol., 1779, 73-83, https://doi.org/10.1007/978-1-4939-7816-8_6.

    Article  CAS  PubMed  Google Scholar 

  188. Werner, T., Horvath, I., and Wittung-Stafshede, P. (2020) Crosstalk between alpha-synuclein and other human and non-human amyloidogenic proteins: Consequences for amyloid formation in Parkinson’s disease, J. Parkinsons. Dis., 10, 819-830, https://doi.org/10.3233/JPD-202085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tsigelny, I. F., Crews, L., Desplats, P., Shaked, G. M., Sharikov, Y., Mizuno, H., Spencer, B., Rockenstein, E., Trejo, M., Platoshyn, O., Yuan, J. X., and Masliah, E. (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases, PLoS One, 3, e3135, https://doi.org/10.1371/journal.pone.0003135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Matiiv, A. B., Moskalenko, S. E., Sergeeva, O. S., Zhouravleva, G. A., and Bondarev, S. A. (2022) NOS1AP interacts with α-synuclein and aggregates in yeast and mammalian cells, Int. J. Mol. Sci., 23, 9102, https://doi.org/10.3390/ijms23169102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Haikal, C., Ortigosa-Pascual, L., Najarzadeh, Z., Bernfur, K., Svanbergsson, A., Otzen, D. E., Linse, S., and Li, J. Y. (2021) The bacterial amyloids phenol soluble modulins from Staphylococcus aureus catalyze alpha-synuclein aggregation, Int. J. Mol. Sci., 22, 11594, https://doi.org/10.3390/ijms222111594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Semerdzhiev, S. A., Fakhree, M. A. A., Segers-Nolten, I., Blum, C., and Claessens, M. M. A. E. (2022) Interactions between SARS-CoV-2 N-protein and α-synuclein accelerate amyloid formation, ACS Chem. Neurosci., 13, 143-150, https://doi.org/10.1021/acschemneuro.1c00666.

    Article  CAS  PubMed  Google Scholar 

  193. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P., and Chapman, M. R. (2012) Diversity, biogenesis and function of microbial amyloids, Trends Microbiol., 20, 66-73, https://doi.org/10.1016/j.tim.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  194. Chen, S. G., Stribinskis, V., Rane, M. J., Demuth, D. R., Gozal, E., Roberts, A. M., Jagadapillai, R., Liu, R., Choe, K., Shivakumar, B., Son, F., Jin, S., Kerber, R., Adame, A., Masliah, E., and Friedland, R. P. (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and Caenorhabditis elegans, Sci. Rep., 6, 34477, https://doi.org/10.1038/srep34477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P., Gradinaru, V., Chapman, M., and Mazmanian, S. K. (2020) A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice, Elife, 9, e53111, https://doi.org/10.7554/eLife.53111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bhoite, S. S., Han, Y., Ruotolo, B. T., and Chapman, M. R. (2022) Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids, J. Biol. Chem., 298, 102088, https://doi.org/10.1016/j.jbc.2022.102088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, C., and Zheng, C. (2022) Using Caenorhabditis elegans to model therapeutic interventions of neurodegenerative diseases targeting microbe-host interactions, Front. Pharmacol., 13, 875349, https://doi.org/10.3389/fphar.2022.875349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang, C., Lau, C. Y., Ma, F., and Zheng, C. (2021) Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration, Proc. Natl. Acad. Sci. USA, 118, e2106504118, https://doi.org/10.1073/pnas.2106504118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jasemi, S., Paulus, K., Noli, M., Simula, E. R., Ruberto, S., and Sechi, L. A. (2022) Antibodies against HSV-1 and curli show the highest correlation in Parkinson’s disease patients in comparison to healthy controls, Int. J. Mol. Sci., 23, 14816, https://doi.org/10.3390/ijms232314816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chandra, R., Hiniker, A., Kuo, Y.-M., Nussbaum, R. L., and Liddle, R. A. (2017) α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease, JCI Insight, 2, e92295, https://doi.org/10.1172/jci.insight.92295.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Hill, A. E., Wade-Martins, R., and Burnet, P. W. J. (2021) What is our understanding of the influence of gut microbiota on the pathophysiology of Parkinson’s disease? Front. Neurosci., 15, 708587, https://doi.org/10.3389/fnins.2021.708587.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Braak, H., Tredici, K. Del, Rüb, U., de Vos, R. A. I., Steur, E. J. N. H., and Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson’s disease, Neurobiol. Aging, 24, 197-211, https://doi.org/10.1016/S0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  203. Mullin, J. M., Valenzano, M. C., Verrecchio, J. J., and Kothari, R. (2002) Age- and diet-related increase in transepithelial colon permeability of Fischer 344 rats, Dig. Dis. Sci., 47, 2262-2270, https://doi.org/10.1023/a:1020191412285.

    Article  CAS  PubMed  Google Scholar 

  204. Ma, T. Y., Hollander, D., Dadufalza, V., and Krugliak, P. (1992) Effect of aging and caloric restriction on intestinal permeability, Exp. Gerontol., 27, 321-333, https://doi.org/10.1016/0531-5565(92)90059-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to 300th anniversary of the St. Petersburg State University. The authors are grateful to Olga Mikhailovna Zemlyanko for critical reading of the paper.

Funding

The work was financially supported by the Russian Science Foundation, grant no. 22-74-10042.

Author information

Authors and Affiliations

Authors

Contributions

N.P.T. writing the section “Association between gut microbiome and synucleinopathies”, processing of the final version of the publication, editing of the paper; A.B.M. writing the section “αSyn protein and synucleinopathies” and subsection “Microbiota and neurodegenerative diseases”, editing of the paper; T.M.R. writing the subsection “Relationship between αSyn and GIT symptoms”, editing of the paper; A.A.Z. and M.D.B. writing the subsection “Human gut microbiome”; G.A.Z. editing of the paper; S.A.B. writing the section “Possible mechanisms of synucleinopathies development associated with dysbiosis”, preparation of illustrations, editing of the paper.

Corresponding author

Correspondence to Stanislav A. Bondarev.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsina, N.P., Matiiv, A.B., Rogoza, T.M. et al. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. Biochemistry Moscow 89, 523–542 (2024). https://doi.org/10.1134/S0006297924030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924030118

Keywords

Navigation