Skip to main content
Log in

Biochemical Features of X or Y Chromosome-Bearing Spermatozoa for Sperm Sexing

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review presents information on biochemical features of spermatozoa bearing X or Y chromosome, enabling production of a sperm fraction with pre-defined sex chromosome. The almost only technology currently used for such separation (called sexing) is based on the fluorescence-activated cell sorting of sperm depending on DNA content. In addition to the applied aspects, this technology made it possible to analyze properties of the isolated populations of spermatozoa bearing X or Y chromosome. In recent years, existence of the differences between these populations at the transcriptome and proteome level have been reported in a number of studies. It is noteworthy that these differences are primarily related to the energy metabolism and flagellar structural proteins. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between the spermatozoa with different sex chromosomes. Sperm sexing is a part of the widespread protocol of artificial insemination of cows with cryopreserved semen, it allows to increase proportion of the offspring with the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLR:

Toll-like receptor

References

  1. Morrell, J. M. (2011) Artificial Insemination: Current and Future Trends (Manafi, M., ed) InTechOpen, London, https://doi.org/10.5772/17943.

  2. Johnson, L. A., Welch, G. R., and Rens, W. (1999) The Beltsville sperm sexing technology: high-speed sperm sorting gives improved sperm output for in vitro fertilization and AI, J. Anim. Sci., 77, 213-220, https://doi.org/10.2527/1999.77suppl_2213x.

    Article  CAS  PubMed  Google Scholar 

  3. Reese, S., Pirez, M. C., Steele, H., and Kölle, S. (2021) The reproductive success of bovine sperm after sex-sorting: a meta-analysis, Sci. Rep., 11, 17366, https://doi.org/10.1038/s41598-021-96834-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seidel, G. E., Schenk, J. L., Herickhoff, L. A., Doyle, S. P., Brink, Z., Green, R. D., and Cran, D. G. (1999) Insemination of heifers with sexed sperm, Theriogenology, 52, 1407-1420, https://doi.org/10.1016/s0093-691x(99)00226-5.

    Article  PubMed  Google Scholar 

  5. Vishwanath, R., and Moreno, J. F. (2018) Review: Semen sexing - current state of the art with emphasis on bovine species, Animal, 12, s85-s96, https://doi.org/10.1017/S1751731118000496.

    Article  CAS  PubMed  Google Scholar 

  6. Gu, N.-H., Zhao, W.-L., Wang, G.-S., and Sun, F. (2019) Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility, Reprod. Biol. Endocrinol., 17, 66, https://doi.org/10.1186/s12958-019-0510-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gervasi, M. G., and Visconti, P. E. (2017) Molecular changes and signaling events occurring in spermatozoa during epididymal maturation, Andrology, 5, 204-218, https://doi.org/10.1111/andr.12320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katz, D. F., and Vanagimachi, R. (1980) Movement characteristics of hamster spermatozoa within the oviduct, Biol. Reprod., 22, 759-764, https://doi.org/10.1095/biolreprod22.4.759.

    Article  CAS  PubMed  Google Scholar 

  9. Achikanu, C., Correia, J., Guidobaldi, H. A., Giojalas, L. C., Barratt, C. L. R., Da Silva, S. M., and Publicover, S. (2019) Continuous behavioural “switching” in human spermatozoa and its regulation by Ca2+-mobilising stimuli, Mol. Hum. Reprod., 25, 423-432, https://doi.org/10.1093/molehr/gaz034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraser, L. R. (1977) Motility patterns in mouse spermatozoa before and after capacitation, J. Exp. Zool., 202, 439-444, https://doi.org/10.1002/jez.1402020314.

    Article  CAS  PubMed  Google Scholar 

  11. Eisenbach, M., and Giojalas, L. C. (2006) Sperm guidance in mammals - an unpaved road to the egg, Nat Rev Mol. Cell Biol., 7, 276-285, https://doi.org/10.1038/nrm1893.

    Article  CAS  PubMed  Google Scholar 

  12. Morisawa, M., and Yoshida, M. (2005) Activation of motility and chemotaxis in the spermatozoa: from invertebrates to humans, Reprod. Med. Biol., 4, 101-114, https://doi.org/10.1111/j.1447-0578.2005.00099.x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vyklicka, L., and Lishko, P. V. (2020) Dissecting the signaling pathways involved in the function of sperm flagellum, Curr. Opin. Cell Biol., 63, 154-161, https://doi.org/10.1016/j.ceb.2020.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaupp, U. B., and Strünker, T. (2017) Signaling in sperm: more different than similar, Trends Cell Biol., 27, 101-109, https://doi.org/10.1016/j.tcb.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  15. Marquez, B., and Suarez, S. S. (2004) Different signaling pathways in bovine sperm regulate capacitation and hyperactivation, Biol. Reprod., 70, 1626-1633, https://doi.org/10.1095/biolreprod.103.026476.

    Article  CAS  PubMed  Google Scholar 

  16. Rudneva, S. A., and Chernykh, V. B. (2018) A mechanism of sperm cilia beating, Androl. Genital Surg., 19, 15-26, https://doi.org/10.17650/2070-9781-2018-19-3-15-26.

    Article  Google Scholar 

  17. Miki, K. (2007) Energy metabolism and sperm function, Soc. Reprod. Fertil. Suppl., 65, 309-325.

    CAS  PubMed  Google Scholar 

  18. Mukai, C., and Okuno, M. (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement, Biol. Reprod., 71, 540-547, https://doi.org/10.1095/biolreprod.103.026054.

    Article  CAS  PubMed  Google Scholar 

  19. Muronetz, V. I., Kuravsky, M. L., Barinova, K. V., and Schmalhausen, E. V. (2015) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase – an evolutionary acquisition of mammals, Biochemistry (Moscow), 80, 1672-1689, https://doi.org/10.1134/S0006297915130040.

    Article  CAS  PubMed  Google Scholar 

  20. Du Plessis, S. S., Agarwal, A., Mohanty, G., and van der Linde, M. (2015) Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?, Asian J. Androl., 17, 230-235, https://doi.org/10.4103/1008-682X.135123.

    Article  CAS  PubMed  Google Scholar 

  21. Elkina, Y. L., Kuravsky, M. L., El’darov, M. A., Stogov, S. V., Muronetz, V. I., and Schmalhausen, E. V. (2010) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability, Biochim. Biophys. Acta, 1804, 2207-2212, https://doi.org/10.1016/j.bbapap.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  22. Ford, W. C. (2006) Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?, Hum. Reprod. Update, 12, 269-274, https://doi.org/10.1093/humupd/dmi053.

    Article  CAS  PubMed  Google Scholar 

  23. King, W. A., Yadav, B. R., Xu, K. P., Picard, L., Sirard, M. A., Verini Supplizi, A., et al. (1991) The sex ratios of bovine embryos produced in vivo and in vitro, Theriogenology, 36, 779-788, https://doi.org/10.1016/0093-691x(91)90343-c.

    Article  CAS  PubMed  Google Scholar 

  24. Machado, G. M., Ferreira, A. R., Guardieiro, M. M., Bastos, M. R., Carvalho, J. O., Lucci, C. M., et al. (2013) Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos, Reprod. Fertil. Dev., 25, 600, https://doi.org/10.1071/RD11282.

    Article  CAS  PubMed  Google Scholar 

  25. Abecia, J.-A., Arrébola, F., and Palacios, C. (2017) Offspring sex ratio in sheep, cattle, goats and pigs: influence of season and lunar phase at conception, Biol. Rhythm Res., 48, 417-424, https://doi.org/10.1080/09291016.2016.1268325.

    Article  Google Scholar 

  26. Ellis, P. J. I., Yu, Y., and Zhang, S. (2011) Transcriptional dynamics of the sex chromosomes and the search for offspring sex-specific antigens in sperm, Reproduction, 142, 609-619, https://doi.org/10.1530/REP-11-0228.

    Article  CAS  PubMed  Google Scholar 

  27. Turner, J. M. A., Mahadevaiah, S. K., Ellis, P. J. I., Mitchell, M. J., and Burgoyne, P. S. (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids, Dev. Cell, 10, 521-529, https://doi.org/10.1016/j.devcel.2006.02.009.

    Article  CAS  PubMed  Google Scholar 

  28. Ventelä, S., Toppari, J., and Parvinen, M. (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing, Mol. Biol. Cell, 14, 2768-2780, https://doi.org/10.1091/mbc.e02-10-0647.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bhutani, K., Stansifer, K., Ticau, S., Bojic, L., Villani, A.-C., Slisz, J., et al. (2021) Widespread haploid-biased gene expression enables sperm-level natural selection, Science, 371, eabb1723, https://doi.org/10.1126/science.abb1723.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., Yue, Y., He, Y., Zhu, H., Hao, H., Zhao, X., et al. (2014) Identification and characterization of genes differentially expressed in X and Y sperm using suppression subtractive hybridization and cDNA microarray, Mol. Reprod. Dev., 81, 908-917, https://doi.org/10.1002/mrd.22386.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, H., Liu, J., Sun, W., Ding, R., Li, X., Shangguan, A., et al. (2020) Differences in small noncoding RNAs profile between bull X and Y sperm, PeerJ, 8, e9822, https://doi.org/10.7717/peerj.9822.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, X., Zhu, H., Wu, C., Han, W., Hao, H., Zhao, X., et al. (2012) Identification of differentially expressed proteins between bull X and Y spermatozoa, J. Proteomics, 77, 59-67, https://doi.org/10.1016/j.jprot.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  33. De Canio, M., Soggiu, A., Piras, C., Bonizzi, L., Galli, A., Urbani, A., et al. (2014) Differential protein profile in sexed bovine semen: shotgun proteomics investigation, Mol. Biosyst., 10, 1264-1271, https://doi.org/10.1039/c3mb70306a.

    Article  CAS  PubMed  Google Scholar 

  34. Scott, C., de Souza, F. F., Aristizabal, V. H. V., Hethrington, L., Krisp, C., Molloy, M., et al. (2018) Proteomic profile of sex-sorted bull sperm evaluated by SWATH-MS analysis, Anim. Reprod. Sci., 198, 121-128, https://doi.org/10.1016/j.anireprosci.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  35. Sang, L., Yang, W. C., Han, L., Liang, A. X., Hua, G. H., Xiong, J. J., et al. (2011) An immunological method to screen sex-specific proteins of bovine sperm, J. Dairy Sci., 94, 2060-2070, https://doi.org/10.3168/jds.2010-3350.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, D., Zhou, C., Cao, M., Cai, W., Yin, H., Jiang, L., et al. (2021) Differential membrane protein profile in bovine X- and Y-Sperm, J. Proteome Res., 20, 3031-3042, https://doi.org/10.1021/acs.jproteome.0c00358.

    Article  CAS  PubMed  Google Scholar 

  37. Umehara, T., Tsujita, N., and Shimada, M. (2019) Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm, PLoS Biol., 17, e3000398, https://doi.org/10.1371/journal.pbio.3000398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laxmivandana, R., Patole, C., Sharma, T. R., Sharma, K. K., and Naskar, S. (2021) Differential proteins associated with plasma membrane in X- and/or Y-chromosome bearing spermatozoa in indicus cattle, Reprod. Dom. Anim., 56, 928-935, https://doi.org/10.1111/rda.13936.

    Article  CAS  Google Scholar 

  39. Thaworn, W., Hongsibsong, S., Thongkham, M., Mekchay, S., Pattanawong, W., and Sringarm, K. (2022) Production of single-chain fragment variable (scFv) antibodies specific to plasma membrane epitopes on bull Y-bearing sperm, Anim. Biotechnol., 33, 508-518, https://doi.org/10.1080/10495398.2020.1811294.

    Article  CAS  PubMed  Google Scholar 

  40. Soleymani, B., Parvaneh, S., and Mostafaie, A. (2019) Goat polyclonal antibody against the sex determining region Y to separate X- and Y-chromosome bearing spermatozoa, Rep. Biochem. Mol. Biol., 8, 326-334.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma, V., Verma, A. K., Sharma, P., Pandey, D., and Sharma, M. (2022) Differential proteomic profile of X- and Y-sorted Sahiwal bull semen, Res. Vet. Sci., 144, 181-189, https://doi.org/10.1016/j.rvsc.2021.11.013.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, Z., Umehara, T., Okazaki, T., Goto, M., Fujita, Y., Hoque, S. A. M., et al. (2019) Gene Expression and protein synthesis in mitochondria enhance the duration of high-speed linear motility in boar sperm, Front. Physiol., 10, 252, https://doi.org/10.3389/fphys.2019.00252.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Capra, E., Turri, F., Lazzari, B., Cremonesi, P., Gliozzi, T. M., Fojadelli, I., et al. (2017) Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations, BMC Genomics, 18, 14, https://doi.org/10.1186/s12864-016-3394-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hendriksen, P. J. M. (1999) Do X and Y spermatozoa differ in proteins?, Theriogenology, 52, 1295-1307, https://doi.org/10.1016/S0093-691X(99)00218-6.

    Article  CAS  PubMed  Google Scholar 

  45. Elkina, Y. L., Atroshchenko, M. M., Bragina, E. E., Muronetz, V. I., and Schmalhausen, E. V. (2011) Oxidation of glyceraldehyde-3-phosphate dehydrogenase decreases sperm motility, Biochemistry (Moscow), 76, 268-272, https://doi.org/10.1134/s0006297911020143.

    Article  CAS  PubMed  Google Scholar 

  46. Shimada, K., Park, S., Miyata, H., Yu, Z., Morohoshi, A., Oura, S., et al. (2021) ARMC12 regulates spatiotemporal mitochondrial dynamics during spermiogenesis and is required for male fertility, Proc. Natl. Acad. Sci. USA, 118, e2018355118, https://doi.org/10.1073/pnas.2018355118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoppe, P. C., and Koo, G. C. (1984) Reacting mouse sperm with monoclonal H-Y antibodies does not influence sex ratio of eggs fertilized in vitro, J. Reprod. Immunol., 6, 1-9, https://doi.org/10.1016/0165-0378(84)90036-6.

    Article  CAS  PubMed  Google Scholar 

  48. Ren, F., Xi, H., Ren, Y., Li, Y., Wen, F., Xian, M., et al. (2021) TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos, J. Anim. Sci. Biotechnol., 12, 89, https://doi.org/10.1186/s40104-021-00613-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hinsch, E., Boehm, J. G., Groeger, S., Mueller-Schloesser, F., and Hinsch, K. D. (2003) Identification of cytokeratins in bovine sperm outer dense fibre fractions, Reprod. Domest. Anim., 38, 155-160, https://doi.org/10.1046/j.1439-0531.2003.00408.x.

    Article  CAS  PubMed  Google Scholar 

  50. Feugang, J. M., Rodriguez-Osorio, N., Kaya, A., Wang, H., Page, G., Ostermeier, G. C., et al. (2010) Transcriptome analysis of bull spermatozoa: implications for male fertility, Reprod. Biomed. Online, 21, 312-324, https://doi.org/10.1016/j.rbmo.2010.06.022.

    Article  CAS  PubMed  Google Scholar 

  51. Hashemitabar, M., Sabbagh, S., Orazizadeh, M., Ghadiri, A., and Bahmanzadeh, M. (2015) A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia, J. Assist. Reprod. Genet., 32, 853-863, https://doi.org/10.1007/s10815-015-0465-7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sringarm, K., Thongkham, M., Mekchay, S., Lumsangkul, C., Thaworn, W., Pattanawong, W., et al. (2022) High-efficiency bovine sperm sexing used magnetic-activated cell sorting by coupling scFv antibodies specific to Y-chromosome-bearing sperm on magnetic microbeads, Biology (Basel), 11, 715, https://doi.org/10.3390/biology11050715.

    Article  CAS  PubMed  Google Scholar 

  53. Rivkin, E., Eddy, E. M., Willis, W. D., Goulding, E. H., Suganuma, R., Yanagimachi, R., et al. (2005) Sperm tail abnormalities in mutant mice withneor gene insertion into an intron of the keratin 9 gene, Mol. Reprod. Dev., 72, 259-271, https://doi.org/10.1002/mrd.20335.

    Article  CAS  PubMed  Google Scholar 

  54. Bucci, D., Galeati, G., Tamanini, C., Vallorani, C., Rodriguez-Gil, J. E., and Spinaci, M. (2012) Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa, Theriogenology, 77, 1206-1216, https://doi.org/10.1016/j.theriogenology.2011.10.028.

    Article  CAS  PubMed  Google Scholar 

  55. Mostek, A., Janta, A., and Ciereszko, A. (2020) Proteomic comparison of non-sexed and sexed (X-bearing) cryopreserved bull semen, Anim. Reprod. Sci., 221, 106552, https://doi.org/10.1016/j.anireprosci.2020.106552.

    Article  CAS  PubMed  Google Scholar 

  56. Garner, D. L., and Seidel Jr., G. E. (2003) Past, present and future perspectives on sexing sperm, Can. J. Anim. Sci., 83, 375-384, https://doi.org/10.4141/A03-022.

    Article  Google Scholar 

  57. Van Munster, E. B., Stap, J., Hoebe, R. A., te Meerman, G. J., and Aten, J. A. (1999) Difference in volume of X- and Y-chromosome-bearing bovine sperm heads matches difference in DNA content, Cytometry, 35, 125-128, https://doi.org/10.1002/(sici)1097-0320(19990201)35:2<125::aid-cyto3>3.0.co;2-h.

    Article  CAS  PubMed  Google Scholar 

  58. Santolaria, P., Pauciullo, A., Silvestre, M. A., Vicente-Fiel, S., Villanova, L., Pinton, A., et al. (2016) Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex, Asian J. Androl., 18, 858-862, https://doi.org/10.4103/1008-682X.187578.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Révay, T., Nagy, S., Kovács, A., Edvi, M. E., Hidas, A., Rens, W., et al. (2004) Head area measurements of dead, live, X- and Y-bearing bovine spermatozoa, Reprod. Fertil. Dev., 16, 681-687, https://doi.org/10.1071/rd04013.

    Article  PubMed  Google Scholar 

  60. Carvalho, J. O., Silva, L. P., Sartori, R., and Dode, M. A. N. (2013) Nanoscale differences in the shape and size of X and Y chromosome-bearing bovine sperm heads assessed by atomic force microscopy, PLoS One, 8, e59387, https://doi.org/10.1371/journal.pone.0059387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cui, K. H., and Matthews, C. D. (1993) X larger than Y, Nature, 366, 117-118, https://doi.org/10.1038/366117b0.

    Article  CAS  PubMed  Google Scholar 

  62. Zavaczki, Z., Celik-Ozenci, C., Ovari, L., Jakab, A., Sati, G. L., Ward, D. C., et al. (2006) Dimensional assessment of X-bearing and Y-bearing haploid and disomic human sperm with the use of fluorescence in situ hybridization and objective morphometry, Fertil. Steril., 85, 121-127, https://doi.org/10.1016/j.fertnstert.2005.07.1295.

    Article  PubMed  Google Scholar 

  63. Penfold, L. M., Holt, C., Holt, W. V., Welch, G. R., Cran, D. G., and Johnson, L. A. (1998) Comparative motility of X and Y chromosome-bearing bovine sperm separated on the basis of DNA content by flow sorting, Mol. Reprod. Dev., 50, 323-327, https://doi.org/10.1002/(SICI)1098-2795(199807)50:3<323::AID-MRD8>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  64. Daloglu, M. U., Lin, F., Chong, B., Chien, D., Veli, M., Luo, W., et al. (2018) 3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating, Sci. Rep., 8, 15650, https://doi.org/10.1038/s41598-018-34040-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carvalho, J. O., Sartori, R., Machado, G. M., Mourão, G. B., and Dode, M. (2010) Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production, Theriogenology, 74, 1521-1530, https://doi.org/10.1016/j.theriogenology.2010.06.030.

    Article  CAS  PubMed  Google Scholar 

  66. Holden, S. A., Murphy, C., Moreno, J. F., Butler, S. T., Cromie, A. R., Lonergan, P., et al. (2017) In vitro characterisation of fresh and frozen sex-sorted bull spermatozoa, Reprod. Fertil. Dev., 29, 1415-1425, https://doi.org/10.1071/RD16086.

    Article  PubMed  Google Scholar 

  67. Park, Y. J., Kwon, K. J., Song, W. H., Pang, W. K., Ryu, D. Y., Saidur Rahman, M., and Pang, M. G. (2021) New technique of sex preselection for increasing female ratio in boar sperm model, Reprod. Domest. Anim., 56, 333-341, https://doi.org/10.1111/rda.13870.

    Article  CAS  PubMed  Google Scholar 

  68. Dominguez, E. M., Moreno-Irusta, A., Guidobaldi, H. A., Tribulo, H., and Giojalas, L. C. (2018) Improved bovine in vitro embryo production with sexed and unsexed sperm selected by chemotaxis, Theriogenology, 122, 1-8, https://doi.org/10.1016/j.theriogenology.2018.08.023.

    Article  PubMed  Google Scholar 

  69. Ericsson, R. J., Langevin, C. N., and Nishino, M. (1973) Isolation of fractions rich in human Y sperm, Nature, 246, 421-424, https://doi.org/10.1038/246421a0.

    Article  CAS  PubMed  Google Scholar 

  70. Neculai-Valeanu, A.-S., and Ariton, A. M. (2021) Game-changing approaches in sperm sex-sorting: microfluidics and nanotechnology, Animals, 11, 1182, https://doi.org/10.3390/ani11041182.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Arzondo, M. M., Caballero, J. N., Marín-Briggiler, C. I., Dalvit, G., Cetica, P. D., and Vazquez-Levin, M. H. (2012) Glass wool filtration of bull cryopreserved semen: a rapid and effective method to obtain a high percentage of functional sperm, Theriogenology, 78, 201-209, https://doi.org/10.1016/j.theriogenology.2012.02.001.

    Article  CAS  PubMed  Google Scholar 

  72. Thys, M., Vandaele, L., Morrell, J., Mestach, J., Van Soom, A., Hoogewijs, M., et al. (2009) In vitro fertilizing capacity of frozen-thawed bull spermatozoa selected by Single-layer (Glycidoxypropyltrimethoxysilane) silane-coated silica colloidal centrifugation, Reprod. Domest. Anim., 44, 390-394, https://doi.org/10.1111/j.1439-0531.2008.01081.x.

    Article  CAS  PubMed  Google Scholar 

  73. Meitei, H. Y., Uppangala, S., Sharan, K., Chandraguthi, S. G., Radhakrishnan, A., Kalthur, G., et al. (2021) A simple, centrifugation-free, sperm-sorting device eliminates the risks of centrifugation in the swim-up method while maintaining functional competence and DNA integrity of selected spermatozoa, Reprod. Sci., 28, 134-143, https://doi.org/10.1007/s43032-020-00269-5.

    Article  CAS  PubMed  Google Scholar 

  74. Azizeddin, A., Ashkar, F., King, W., and Revay, T. (2014) Enrichment of Y-chromosome-bearing bull spermatozoa by swim-up through a column, Reprod. Dom. Anim., 49, 1-4, https://doi.org/10.1111/rda.12252.

    Article  Google Scholar 

  75. Promthep, K., Satitmanwiwat, S., Kitiyanant, N., Tantiwattanakul, P., Jirajaroenrat, K., Sitthigripong, R., et al. (2016) Practical use of percoll density gradient centrifugation on sperm sex determination in commercial dairy farm in Thailand, IJAR, 50, 310-313, https://doi.org/10.18805/ijar.8427.

    Article  Google Scholar 

  76. Bhat, Y., and Sharma, M. (2020) X-sperm enrichment of bovine semen by Percoll density gradient method and its effect on semen quality, sex ratio and conception rate, IJAR, 54, 1181-1187.

    Google Scholar 

  77. Lucio, A. C., Resende, M. V., Dernowseck-Meirelles, J. A., Perini, A. P., Oliveira, L. Z., Miguel, M. C. V., et al. (2012) Assessment of swim-up and discontinuous density gradient in sperm sex preselection for bovine embryo production, Arq. Bras. Med. Vet. Zootec., 64, 525-532, https://doi.org/10.1590/S0102-09352012000300001.

    Article  Google Scholar 

  78. Kobayashi, J., Oguro, H., Uchida, H., Kohsaka, T., Sasada, H., and Sato, E. (2004) Assessment of bovine X- and Y-bearing spermatozoa in fractions by discontinuous percoll gradients with rapid fluorescence in situ hybridization, J. Reprod. Dev., 50, 463-469, https://doi.org/10.1262/jrd.50.463.

    Article  PubMed  Google Scholar 

  79. Machado, G. M., Carvalho, J. O., Filho, E. S., Caixeta, E. S., Franco, M. M., Rumpf, R., et al. (2009) Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos, Theriogenology, 71, 1289-1297, https://doi.org/10.1016/j.theriogenology.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  80. Wolf, C. A., Brass, K., Rubin, M. I. B., Pozzobon, S. E., Mozzaquatro, F., and De la Côrte, F. D. (2008) The effect of sperm selection by Percoll or swim-up on the sex ratio of in vitro produced bovine embryos, Anim. Reprod., 5, 110-115.

    Google Scholar 

  81. Madrid-Bury, N., Fernández, R., Jiménez, A., Pérez-Garnelo, S., Nuno Moreira, P., Pintado, B., et al. (2003) Effect of ejaculate, bull, and a double swim-up sperm processing method on sperm sex ratio, Zygote, 11, 229-235, https://doi.org/10.1017/S0967199403002272.

    Article  PubMed  Google Scholar 

  82. Resende, M. V., Lucio, A. C., Perini, A. P., Oliveira, L. Z., Almeida, A. O., Alves, B. C. A., et al. (2011) Comparative validation using quantitative real-time PCR (qPCR) and conventional PCR of bovine semen centrifuged in continuous density gradient, Arq. Bras. Med. Vet. Zootec., 63, 544-551, https://doi.org/10.1590/S0102-09352011000300002.

    Article  CAS  Google Scholar 

  83. Asma-ul-Husna, Awan, M.A., Mehmood, A., Sultana, T., Shahzad, Q., Ansari, M. S., et al. (2017) Sperm sexing in Nili-Ravi buffalo through modified swim up: Validation using SYBR green real-time PCR, Anim. Reprod. Sci., 182, 69-76, https://doi.org/10.1016/j.anireprosci.2017.04.011.

    Article  CAS  PubMed  Google Scholar 

  84. Meles, D. K., Mustofa, I., Hariadi, M., Wurlina, W., Susilowati, S., Amaliya, A., et al. (2022) The enriched Y-bearing sperm combined with delayed fixed-time artificial insemination for obtaining male Simmental crossbred offspring, Vet. World, 15, 102-109, https://doi.org/10.14202/vetworld.2022.102-109.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Umehara, T., Tsujita, N., Zhu, Z., Ikedo, M., and Shimada, M. (2020) A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos, Nat. Protoc., 15, 2645-2667, https://doi.org/10.1038/s41596-020-0348-y.

    Article  CAS  PubMed  Google Scholar 

  86. Huang, M., Cao, X. Y., He, Q. F., Yang, H. W., Chen, Y. Z., Zhao, J. L., et al. (2022) Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm, J. Dairy Sci., 105, 10020-10032, https://doi.org/10.3168/jds.2022-22115.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-34-80009).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.V.P. and V.I.M.; original draft preparation, D.V.P.; review and editing, V.I.M., N.A.K.; visualization, D.V.P.

Corresponding author

Correspondence to Denis V. Pozdyshev.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any research with humans participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdyshev, D.V., Kombarova, N.A. & Muronetz, V.I. Biochemical Features of X or Y Chromosome-Bearing Spermatozoa for Sperm Sexing. Biochemistry Moscow 88, 655–666 (2023). https://doi.org/10.1134/S0006297923050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923050085

Keywords

Navigation