Skip to main content
Log in

Blood Oxylipin Profiles as Markers of Oncological Diseases

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Oxylipins are signal lipid molecules formed from polyunsaturated fatty acids (PUFAs) in several multienzymatic metabolic pathways, such as cyclooxygenase (COX), lipoxygenase (LOX), epoxygenase (CYP), and anandamide pathways, as well as non-enzymatically. The pathways of PUFA transformation are activated in parallel, yielding a mixture of physiologically active substances. Although the association of oxylipins with carcinogenesis had been established a long time ago, only recently analytical methods have advanced to a degree allowing detection and quantification of oxylipins from different classes (oxylipin profiles). The review describes current approaches to the HPLC-MS/MS analysis of oxylipin profiles and compares oxylipin profiles from patients with oncological diseases (breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, liver cancer). The possibility of using blood oxylipin profiles as biomarkers in oncological diseases is discussed. Understanding the patterns of PUFA metabolism and physiological activity of combinations of oxylipins will improve early diagnostics of oncological diseases and evaluation of disease prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

COX:

cyclooxygenase

CYP:

cytochrome P450

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

LA:

linoleic acid

LOX:

lipoxygenase

References

  1. Sergeeva, M. G., and Varfolomeeva, A. T. (2006) Arachidonic Acid Cascade, Public education, Moscow, Russia.

  2. Gabbs, M., Leng, S., Devassy, J. G., Monirujjaman, M., and Aukema, H. M. (2015) Advances in our understanding of oxylipins derived from dietary PUFAs, Adv. Nutr., 6, 513-540, https://doi.org/10.3945/an.114.007732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hajeyah, A. A., Griffiths, W. J., Wang, Y., Finch, A. J., and O’Donnell, V. B. (2020) The biosynthesis of enzymatically oxidized lipids, Front. Endocrinol., 11, 591819, https://doi.org/10.3389/FENDO.2020.591819.

    Article  Google Scholar 

  4. Genrikhs, E. E., Bobrov, M. Y., Andrianova, E. L., Gretskaya, N. M., Lyzhin, A. A., Blazhenova, A. V., et al. (2010) Modulators of endogenous cannabinoid system as neuroprotectors, Ann. Clin. Exp. Neurol., 4, 37-42, https://doi.org/10.17816/psaic323.

    Article  Google Scholar 

  5. Buczynski, M. W., Dumlao, D. S., and Dennis, E. A. (2009) An integrated omics analysis of eicosanoid biology, J. Lipid Res., 50, 1015-1038, https://doi.org/10.1194/jlr.R900004-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, A. M., Kleczko, E. K., and Nemenoff, R. A. (2020) Eicosanoids in cancer: new roles in immunoregulation, Front. Pharmacol., 11, 595498, https://doi.org/10.3389/FPHAR.2020.595498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dennis, E. A., and Norris, P. C. (2015) Eicosanoid storm in infection and inflammation, Nat. Rev. Immunol., 15, 511-523, https://doi.org/10.1038/nri3859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serhan, C. N. (2014) Pro-resolving lipid mediators are leads for resolution physiology, Nature, 510, 92-101, https://doi.org/10.1038/nature13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., et al. (2019) Chronic inflammation in the etiology of disease across the life span, Nat. Med., 25, 1822-1832, https://doi.org/10.1038/S41591-019-0675-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Medzhitov, R. (2021) The spectrum of inflammatory responses, Science, 374, 1070-1075, https://doi.org/10.1126/SCIENCE.ABI5200.

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov, R. (2008) Origin and physiological roles of inflammation, Nature, 454, 428-435, https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  12. Van Praet, L., Jacques, P., Van den Bosch, F., and Elewaut, D. (2012) The transition of acute to chronic bowel inflammation in spondyloarthritis, Nat. Rev. Rheumatol., 8, 288-295, https://doi.org/10.1038/nrrheum.2012.42.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/J.CELL.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  14. Coussens, L. M., and Werb, Z. (2002) Inflammation and cancer, Nature, 420, 860-867, https://doi.org/10.1038/NATURE01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akimov, M. G., Bobrov, M. U., Bezuglov, V. V., and Konovalov, S. S. (2009) Lipids and Cancer: Essays on Lipidology Oncological Process, Prime-Evroznak, Russia.

  16. Schebb, N. H., Kühn, H., Kahnt, A. S., Rund, K. M., O’Donnell, V. B., Flamand, N., et al. (2022) Formation, signaling and occurrence of specialized pro-resolving lipid mediators-what is the evidence so far? Front. Pharmacol., 13, 838782, https://doi.org/10.3389/FPHAR.2022.838782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burla, B., Arita, M., Arita, M., Bendt, A. K., Cazenave-Gassiot, A., Dennis, E. A., et al. (2018) MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines, J. Lipid Res., 59, 2001-2017, https://doi.org/10.1194/jlr.S087163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morris, J. K., Piccolo, B. D., John, C. S., Green, Z. D., Thyfault, J. P., and Adams, S. H. (2019) Oxylipin profiling of Alzheimer’s disease in nondiabetic and type 2 diabetic elderly, Metabolites, 9, 177, https://doi.org/10.3390/metabo9090177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, B., Lang, S., Duan, Y., Wang, Y., Shawcross, D. L., Louvet, A., et al. (2019) Serum and fecal oxylipins in patients with alcohol-related liver disease, Digest. Dis. Sci., 64, 1878-1892, https://doi.org/10.1007/s10620-019-05638-y.

    Article  CAS  PubMed  Google Scholar 

  20. Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H., et al. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma, J. Lipid Res., 51, 3299-3305, https://doi.org/10.1194/JLR.M009449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huynh, K., Barlow, C. K., Jayawardana, K. S., Weir, J. M., Mellett, N. A., Cinel, M., et al. (2019) High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors, Cell Chem. Biol., 26, 71-84.e4, https://doi.org/10.1016/J.CHEMBIOL.2018.10.008.

    Article  CAS  PubMed  Google Scholar 

  22. Lam, S. M., Tian, H., and Shui, G. (2017) Lipidomics, en route to accurate quantitation, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 752-761, https://doi.org/10.1016/J.BBALIP.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  23. Bowden, J. A., Heckert, A., Ulmer, C. Z., Jones, C. M., Koelmel, J. P., Abdullah, L., et al. (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-metabolites in frozen human plasma, J. Lipid Res., 58, 2275-2288, https://doi.org/10.1194/JLR.M079012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mainka, M., Dalle, C., Pétéra, M., Dalloux-Chioccioli, J., Kampschulte, N., Ostermann, A. I., et al. (2020) Harmonized procedures lead to comparable quantification of total oxylipins across laboratories, J. Lipid Res., 61, 1424-1436, https://doi.org/10.1194/jlr.RA120000991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch, E., Mainka, M., Dalle, C., Ostermann, A. I., Rund, K. M., Kutzner, L., et al. (2020) Stability of oxylipins during plasma generation and long-term storage, Talanta, 217, 121074, https://doi.org/10.1016/j.talanta.2020.121074.

    Article  CAS  PubMed  Google Scholar 

  26. Liakh, I., Pakiet, A., Sledzinski, T., and Mika, A. (2020) Methods of the analysis of oxylipins in biological samples, Molecules, 25, 349, https://doi.org/10.3390/molecules25020349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frezza, C. (2020) Metabolism and cancer: the future is now, Br. J. Cancer, 122, 133-135, https://doi.org/10.1038/s41416-019-0667-3.

    Article  PubMed  Google Scholar 

  28. Koundouros, N., and Poulogiannis, G. (2020) Reprogramming of fatty acid metabolism in cancer, Br. J. Cancer, 122, 4-22, https://doi.org/10.1038/S41416-019-0650-Z.

    Article  CAS  PubMed  Google Scholar 

  29. Butler, L. M., Perone, Y., Dehairs, J., Lupien, L. E., de Laat, V., Talebi, A., et al. (2020) Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention, Adv. Drug Deliv. Rev., 159, 245-293, https://doi.org/10.1016/j.addr.2020.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pakiet, A., Kobiela, J., Stepnowski, P., Sledzinski, T., and Mika, A. (2019) Changes in lipids composition and metabolism in colorectal cancer: a review, Lipids Health Dis., 18, 29, https://doi.org/10.1186/S12944-019-0977-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, D., and DuBois, R. N. (2018) Role of prostanoids in gastrointestinal cancer, J. Clin. Invest., 128, 2732-2742, https://doi.org/10.1172/JCI97953.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patrignani, P., Sacco, A., Sostres, C., Bruno, A., Dovizio, M., Piazuelo, E., et al. (2017) Low-dose aspirin acetylates cyclooxygenase-1 in human colorectal mucosa: implications for the chemoprevention of colorectal cancer, Clin. Pharmacol. Ther., 102, 52-61, https://doi.org/10.1002/CPT.639.

    Article  CAS  PubMed  Google Scholar 

  33. Edin, M. L., Duval, C., Zhang, G., and Zeldin, D. C. (2020) Role of linoleic acid-derived oxylipins in cancer, Cancer Metastasis Rev., 39, 581-582, https://doi.org/10.1007/s10555-020-09904-8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Azrad, M., Turgeon, C., and Demark-Wahnefried, W. (2013) Current evidence linking polyunsaturated fatty acids with cancer risk and progression, Front. Oncol., 3, 224, https://doi.org/10.3389/FONC.2013.00224.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Markosyan, N., Chen, E. P., and Smyth, E. M. (2014) Targeting COX-2 abrogates mammary tumorigenesis: breaking cancer-associated suppression of immunosurveillance, Oncoimmunology, 3, e29287, https://doi.org/10.4161/ONCI.29287.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schneider, C., and Pozzi, A. (2011) Cyclooxygenases and lipoxygenases in cancer, Cancer Metastasis Rev., 30, 277-294, https://doi.org/10.1007/S10555-011-9310-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Catalano, A., and Procopio, A. (2005) New aspects on the role of lipoxygenases in cancer progression, Histol. Histopathol., 20, 969-975, https://doi.org/10.14670/HH-20.969.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Q., Morris, R. J., Bode, A. M., and Zhang, T. (2022) Prostaglandin pathways: opportunities for cancer prevention and therapy, Cancer Res., 82, 949-965, https://doi.org/10.1158/0008-5472.CAN-21-2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, Y., and Liu, J. Y. (2020) Pleiotropic functions of cytochrome p450 monooxygenase-derived eicosanoids in cancer, Front. Pharmacol., 11, 580897, https://doi.org/10.3389/FPHAR.2020.580897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahapatra, A. D., Choubey, R., and Datta, B. (2020) Small molecule soluble epoxide hydrolase inhibitors in multitarget and combination therapies for inflammation and cancer, Molecules, 25, 5488, https://doi.org/10.3390/MOLECULES25235488.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bruno, R. D., and Njar, V. C. O. (2007) Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development, Bioorg. Med. Chem., 15, 5047-5060, https://doi.org/10.1016/J.BMC.2007.05.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laezza, C., Pagano, C., Navarra, G., Pastorino, O., Proto, M. C., Fiore, D., et al. (2020) The endocannabinoid system: a target for cancer treatment, Int. J. Mol. Sci., 21, 747, https://doi.org/10.3390/IJMS21030747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chocholoušková, M., Jirásko, R., Vrána, D., Gatěk, J., Melichar, B., and Holčapek, M. (2019) Reversed phase UHPLC/ESI-MS determination of oxylipins in human plasma: a case study of female breast cancer, Anal. Bioanal. Chem., 411, 1239-1251, https://doi.org/10.1007/s00216-018-1556-y.

    Article  CAS  PubMed  Google Scholar 

  44. Chistyakov, D. V., Guryleva, M. V., Stepanova, E. S., Makarenkova, L. M., Ptitsyna, E. V., Goriainov, S. V., et al. (2022) Multi-omics approach points to the importance of oxylipins metabolism in early-stage breast cancer, Cancers, 14, 2041, https://doi.org/10.3390/cancers14082041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, J., Zheng, Y., Li, W., Zhi, J., Huang, X., Zhu, W., et al. (2022) Combined metabolomics with transcriptomics reveals potential plasma biomarkers correlated with non-small-cell lung cancer proliferation through the Akt pathway, Clin. Chim. Acta, 530, 66-73, https://doi.org/10.1016/J.CCA.2022.02.018.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Yang, Q., Li, J., Zhong, Y., Zhang, L., Huang, Q., et al. (2017) Distinct differences in serum eicosanoids in healthy, enteritis and colorectal cancer individuals, Metabolomics, 14, 4, https://doi.org/10.1007/S11306-017-1293-9.

    Article  PubMed  Google Scholar 

  47. Guo, J., Pan, Y., Chen, J., Jin, P., Tang, S., Wang, H., et al. (2023) Serum metabolite signatures in normal individuals and patients with colorectal adenoma or colorectal cancer using UPLC-MS/MS method, J. Proteomics, 270, 104741, https://doi.org/10.1016/J.JPROT.2022.104741.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, L.-Jian, Chen, B., Zhang, J.-Jie, Li, J., Yang, Q., Zhong, Q.-Sheng, et al. (2017) Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer, Prostaglandins Leukot. Essent. Fatty Acids, 120, 25-31, https://doi.org/10.1016/J.PLEFA.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, J., Mazzone, P. J., Cata, J. P., Kurz, A., Bauer, M., Mascha, E. J., et al. (2014) Serum free fatty acid biomarkers of lung cancer, Chest, 146, 670-679, https://doi.org/10.1378/CHEST.13-2568.

    Article  PubMed  Google Scholar 

  50. Fitian, A. I., Nelson, D. R., Liu, C., Xu, Y., Ararat, M., and Cabrera, R. (2014) Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS, Liver Int., 34, 1428-1444, https://doi.org/10.1111/LIV.12541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong, Z. G., Zhao, W., Zhang, J., Wu, X., Hu, J., Yin, G. C., et al. (2017) Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis, Oncotarget, 8, 63890-63900, https://doi.org/10.18632/ONCOTARGET.19173.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rodríguez-Blanco, G., Burgers, P. C., Dekker, L. J. M., Ijzermans, J. J. N., Wildhagen, M. F., Schenk-Braat, E. A. M., et al. (2014) Serum levels of arachidonic acid metabolites change during prostate cancer progression, Prostate, 74, 618-627, https://doi.org/10.1002/PROS.22779.

    Article  PubMed  Google Scholar 

  53. Pruimboom, W. M., Bac, D. J., van Dijk, A. P. M., Garrelds, I. M., Tak, C. J., Bonta, I. L., et al. (1995) Levels of soluble intercellular adhesion molecule 1, eicosanoids and cytokines in ascites of patients with liver cirrhosis, peritoneal cancer and spontaneous bacterial peritonitis, Int. J. Immunopharmacol., 17, 375-384, https://doi.org/10.1016/0192-0561(95)00015-T.

    Article  CAS  PubMed  Google Scholar 

  54. Hada, M., Edin, M. L., Hartge, P., Lih, F. B., Wentzensen, N., Zeldin, D. C., et al. (2019) Prediagnostic serum levels of fatty acid metabolites and risk of ovarian cancer in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial, Cancer Epidemiol. Biomarkers Prev., 28, 189-197, https://doi.org/10.1158/1055-9965.EPI-18-0392.

    Article  PubMed  Google Scholar 

  55. Wu, C. C., Gupta, T., Garcia, V., Ding, Y., and Schwartzman, M. L. (2014) 20-HETE and blood pressure regulation: clinical implications, Cardiol. Rev., 22, 1-12, https://doi.org/10.1097/CRD.0B013E3182961659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murakami, M., Sato, H., and Taketomi, Y. (2020) Updating phospholipase A2 biology, Biomolecules, 10, 1-33, https://doi.org/10.3390/BIOM10101457.

    Article  Google Scholar 

  57. Nagarajan, S. R., Butler, L. M., and Hoy, A. J. (2021) The diversity and breadth of cancer cell fatty acid metabolism, Cancer Metab., 9, 2, https://doi.org/10.1186/s40170-020-00237-2.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yeung, J., Hawley, M., and Holinstat, M. (2017) The expansive role of oxylipins on platelet biology, J. Mol. Med., 95, 575-588, https://doi.org/10.1007/s00109-017-1542-4.

    Article  CAS  PubMed  Google Scholar 

  59. Lone, A.M., and Taskén, K. (2013) Proinflammatory and immunoregulatory roles of eicosanoids in T cells, Front. Immunol., 4, 130, https://doi.org/10.3389/FIMMU.2013.00130.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bogatcheva, N. V., Sergeeva, M. G., Dudek, S. M., and Verin, A. D. (2005) Arachidonic acid cascade in endothelial pathobiology, Microvasc. Res., 69, 107-127, https://doi.org/10.1016/j.mvr.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Fund for Scientific and Technological Development of Yugra, project no. 2022-05-04

Author information

Authors and Affiliations

Authors

Contributions

D.V.C., M.G.S. – development of the concept and writing the article, D.V.C., M.G.S., L.V.K., M.Yu.D. – selection of the literature and editing of the article text; D.V.C., M.G.S. – revision and final approval of the article.

Corresponding author

Correspondence to Dmitry V. Chistyakov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, D.V., Kovalenko, L.V., Donnikov, M.Y. et al. Blood Oxylipin Profiles as Markers of Oncological Diseases. Biochemistry Moscow 88, 621–629 (2023). https://doi.org/10.1134/S000629792305005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792305005X

Keywords

Navigation