Skip to main content
Log in

Proteomic Markers and Early Prediction of Alzheimer’s Disease

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid-β peptides

ACE:

angiotensin converting enzyme

AD:

Alzheimer’s disease

APP:

amyloid precursor protein

Apo:

apolipoprotein

BACE1:

beta-secretase 1

CB:

candidate biomarker

CSF:

cerebrospinal fluid

IL:

interleukin

MCI:

mild cognitive impairment

MS:

mass spectrometry

NfL:

neurofilament light chain

sTREM2:

soluble form of triggering receptor expressed on myeloid cells 2

t-tau and p-tau:

total and phosphorylated tau proteins, respectively

TNF:

tumor necrosis factor

VILIP-1:

visin-like-protein-1

YKL-40:

chitinase-3 like-1

References

  1. Alzheimer’s Association (2021) 2021 Alzheimer’s disease facts and figures, Alzheimer’s Dement., 17, 327-406, https://doi.org/10.1002/alz.12328.

    Article  CAS  Google Scholar 

  2. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., et al. (2013) The global prevalence of dementia: A systematic review and metaanalysis, Alzheimer’s Dement., 9, 63-75, https://doi.org/10.1016/j.jalz.2012.11.007.

    Article  Google Scholar 

  3. Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., et al. (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers, Lancet Neurol., 12, 207-216, https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galluzzi, S., Geroldi, C., Amicucci, G., Bocchio-Chiavetto, L., Bonetti, M., et al. (2013) Supporting evidence for using biomarkers in the diagnosis of MCI due to AD, J. Neurol., 260, 640-650, https://doi.org/10.1007/s00415-012-6694-0.

    Article  CAS  PubMed  Google Scholar 

  5. Perrin, R. J., Fagan, A. M., and Holtzman, D. M. (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease, Nature, 461, 916-922, https://doi.org/10.1038/nature08538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Long, J. M., and Holtzman, D. M. (2019) Alzheimer’s disease: an update on pathobiology and treatment strategies, Cell, 179, 312-339, https://doi.org/10.1016/j.cell.2019.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duyckaerts, C., Delatour, B., and Potier, M. C. (2009) Classification and basic pathology of Alzheimer’s disease, Acta Neuropathol., 118, 5-36, https://doi.org/10.1007/s00401-009-0532-1.

    Article  CAS  PubMed  Google Scholar 

  8. Jack, Jr. C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., et al. (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease, Alzheimer’s Dement., 14, 535-562, https://doi.org/10.1016/j.jalz.2018.02.018.

    Article  Google Scholar 

  9. Jack, C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., et al. (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment, Neurology, 52, 1397-1397, https://doi.org/10.1212/wnl.52.7.1397.

    Article  PubMed  Google Scholar 

  10. Dickerson, B. C., and Wolk, D. A. (2012) MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults, Neurology, 78, 84-90, https://doi.org/10.1212/WNL.0b013e31823efc6c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Killiany, R. J., Gomez‐Isla, T., Moss, M., Kikinis, R., Sandor, T., et al. (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease, Ann. Neurol., 47, 430-439.

    Article  CAS  Google Scholar 

  12. Hampel, H., Bürger, K., Teipel, S. J., Bokde, A. L., Zetterberg, H., et al. (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease, Alzheimer’s Dement., 4, 38-48, https://doi.org/10.1016/j.jalz.2007.08.006.

    Article  CAS  Google Scholar 

  13. Petersen, R. C. (2003) Mild Cognitive Impairment: Aging to Alzheimer’s Disease, Oxford University Press.

  14. Blennow, K. (2017) A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood, Neurol. Ther., 6, 15-24, https://doi.org/10.1007/s40120-017-0073-9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Modrego, P. J. (2006) Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment, Curr. Alzheimer Res., 3, 161-170, https://doi.org/10.2174/156720506776383103.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., et al. (2012) Diagnostic accuracy of 18 F-FDG and 11 C-PIB–PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment, Int. J. Clin. Pract., 66, 185-198, https://doi.org/10.1111/j.1742-1241.2011.02845.x.

    Article  CAS  PubMed  Google Scholar 

  17. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., et al. (2007) Imaging β-amyloid burden in aging and dementia, Neurology, 68, 1718-1725, https://doi.org/10.1212/01.wnl.0000261919.22630.ea.

    Article  CAS  PubMed  Google Scholar 

  18. Rice, L., and Bisdas, S. (2017) The diagnostic value of FDG and amyloid PET in Alzheimer’s disease – A systematic review, Eur. J. Radiol., 94, 16-24, https://doi.org/10.1016/j.ejrad.2017.07.014.

    Article  PubMed  Google Scholar 

  19. Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C., et al. (2018) Blood-based biomarkers for Alzheimer’s disease: mapping the road to the clinic, Nat. Rev. Neurol., 14, 639-652, https://doi.org/10.1038/s41582-018-0079-7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roche, S., Gabelle, A., and Lehmann, S. (2008) Clinical proteomics of the cerebrospinal fluid: towards the discovery of new biomarkers, Proteomics Clin. Appl., 2, 428-436, https://doi.org/10.1002/prca.200780040.

    Article  CAS  PubMed  Google Scholar 

  21. Kroksveen, A. C., Opsahl, J. A., Aye, T. T., Ulvik, R. J., and Berven, F. S. (2011) Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics, J. Proteomics, 74, 371-388, https://doi.org/10.1016/j.jprot.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

  22. Tapiola, T., Alafuzoff, I., Herukka, S. K., Parkkinen, L., Hartikainen, P., et al. (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain, Arch. Neurol., 66, 382-389, https://doi.org/10.1001/archneurol.2008.596.

    Article  PubMed  Google Scholar 

  23. Ritchie, C., Smailagic, N., Ladds, E. C., Noel-Storr, A. H., Ukoumunne, O., et al. (2013) CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI), Cochrane Database Syst. Rev., 3, CD10803, https://doi.org/10.1002/14651858.CD010803.

    Article  Google Scholar 

  24. Grimmer, T., Riemenschneider, M., Fors, H., Henriksen, G., Klunk, W. E., et al. (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid, Biol. Psychiatry, 65, 927-934, https://doi.org/10.1016/j.biopsych.2009.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira, D., Perestelo-Pérez, L., Westman, E., Wahlund, L. O., Sarría, A., et al. (2014) Meta-review of CSF core biomarkers in Alzheimer’s disease: the state-of-the-art after the new revised diagnostic criteria, Front. Aging Neurosci., 6, 47, https://doi.org/10.3389/fnagi.2014.00047.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, Jr. C. R., et al. (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimer’s Dement., 7, 263-269, https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  Google Scholar 

  27. Schott, J. M., and Petersen, R. C. (2015) New criteria for Alzheimer’s disease: which, when and why? Brain, 138, 1134-1137, https://doi.org/10.1093/brain/awv055.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olsson, B., Lautner, R., Andreasson, U., Öhrfelt, A., Portelius, E., et al. (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis, Lancet Neurol., 15, 673-684, https://doi.org/10.1016/S1474-4422(16)00070-3.

    Article  CAS  PubMed  Google Scholar 

  29. Rosén, C., Hansson, O., Blennow, K., and Zetterberg, H. (2013) Fluid biomarkers in Alzheimer’s disease – current concepts, Mol. Neurodegener., 8, 20, https://doi.org/10.1186/1750-1326-8-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huynh, R. A., and Mohan, C. (2017) Alzheimer’s disease: biomarkers in the genome, blood, and cerebrospinal fluid, Front. Neurol., 8, 102, https://doi.org/10.3389/fneur.2017.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ovod, V., Ramsey, K. N., Mawuenyega, K. G., Bollinger, J. G., Hicks, T., et al. (2017) Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis, Alzheimer’s Dement., 13, 841-849, https://doi.org/10.1016/j.jalz.2017.06.2266.

    Article  Google Scholar 

  32. Nakamura, A., Kaneko, N., Villemagne, V. L., Kato, T., Doecke, J., et al. (2018) High performance plasma amyloid-beta biomarkers for Alzheimer’s disease, Nature, 554, 249-254, https://doi.org/10.1038/nature25456.

    Article  CAS  PubMed  Google Scholar 

  33. Zetterberg, H., and Blennow, K. (2021) Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics, Mol. Neurodegener., 16, 10, https://doi.org/10.1186/s13024-021-00430-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barthelemy, N. R., Horie, K., Sato, C., and Bateman, R. J. (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease, J. Exp. Med., 217, e20200861, https://doi.org/10.1084/jem.20200861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zakharova, N. V., Kononikhin, A. S., Indeykina, M. I., Bugrova, A. E., Strelnikova, P., et al. (2022) Mass spectrometric studies of the variety of beta-amyloid proteofprms in Alzheimer’s disease, Mass Spectrom. Rev., e21775, https://doi.org/10.1002/mas.21775.

    Article  PubMed  Google Scholar 

  36. Evin, G., Zhu, A., Holsinger, R. M. D., Masters, C. L., and Li, Q. X. (2003) Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets, J. Neurosci. Res., 74, 386-392, https://doi.org/10.1002/jnr.10745.

    Article  CAS  PubMed  Google Scholar 

  37. Galozzi, S., Marcus, K., and Barkovits, K. (2015) Amyloid-β as a biomarker for Alzheimer’s disease: quantification methods in body fluids, Expert. Rev. Proteomics, 12, 343-354, https://doi.org/10.1586/14789450.2015.1065183.

    Article  CAS  PubMed  Google Scholar 

  38. Gallardo, R., Ranson, N. A., and Radford, S. E. (2020) Amyloid structures: much more than just a cross-β fold, Curr. Opin. Struct. Biol., 60, 7-16, https://doi.org/10.1016/j.sbi.2019.09.001.

    Article  CAS  PubMed  Google Scholar 

  39. Kent, S. A., Spires-Jones, T. L., and Durrant, C. S. (2020) The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics, Acta Neuropathol., 140, 417-447, https://doi.org/10.1007/s00401-020-02196-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogers, J., Strohmeyer, R., Kovelowski, C. J., and Li, R. (2002) Microglia and inflammatory mechanisms in the clearance of amyloid β peptide, Glia, 40, 260-269, https://doi.org/10.1002/glia.10153.

    Article  PubMed  Google Scholar 

  41. Wang, J., Gu, B. J., Masters, C. L., and Wang, Y. J. (2017) A systemic view of Alzheimer disease – Insights from amyloid-β metabolism beyond the brain, Nat. Rev. Neurol., 13, 612-623, https://doi.org/10.1038/nrneurol.2017.111.

    Article  CAS  PubMed  Google Scholar 

  42. Kummer, M. P., and Heneka, M. T. (2014) Truncated and modified amyloid-beta species, Alzheimer’s Res. Ther., 6, 28, https://doi.org/10.1186/alzrt258.

    Article  Google Scholar 

  43. Roher, A. E., Kokjohn, T. A., Clarke, S. G., Sierks, M. R., Maarouf, C. L., et al. (2017) APP/Aβ structural diversity and Alzheimer’s disease pathogenesis, Neurochem. Int., 110, 1-13, https://doi.org/10.1016/j.neuint.2017.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansson, O., Lehmann, S., Otto, M., Zetterberg, H., and Lewczuk, P. (2019) Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s disease, Alzheimers Res. Ther., 11, 1-15, https://doi.org/10.1186/s13195-019-0485-0.

    Article  CAS  Google Scholar 

  45. Roberts, K. F., Elbert, D. L., Kasten, T. P., Patterson, B. W., Sigurdson, W. C., et al. (2014) Amyloid‐β efflux from the central nervous system into the plasma, Ann. Neurol., 76, 837-844, https://doi.org/10.1002/ana.24270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Q. X., Fuller, S. J., Beyreuther, K., and Masters, C. L. (1999) The amyloid precursor protein of Alzheimer disease in human brain and blood, J. Leukoc. Biol., 66, 567-574, https://doi.org/10.1002/jlb.66.4.567.

    Article  CAS  PubMed  Google Scholar 

  47. Borroni, B., Agosti, C., Marcello, E., Di Luca, M., and Padovani, A. (2010) Blood cell markers in Alzheimer disease: amyloid precursor protein form ratio in platelets, Exp. Gerontol., 45, 53-56, https://doi.org/10.1016/j.exger.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  48. Di Luca, M., Colciaghi, F., Pastorino, L., Borroni, B., Padovani, A., et al. (2000) Platelets as a peripheral district where to study pathogenetic mechanisms of alzheimer disease: the case of amyloid precursor protein, Eur. J. Pharmacol., 405, 277-283, https://doi.org/10.1016/s0014-2999(00)00559-8.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, F., Davis, J., Miao, J., Previti, M. L., Romanov, G., et al. (2005) Protease nexin-2/amyloid β-protein precursor limits cerebral thrombosis, Proc. Natl. Acad. Sci. USA, 102, 18135-18140, https://doi.org/10.1073/pnas.0507798102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eltringham-Smith, L. J., Bhakta, V., and Sheffield, W. P. (2021) Selection and in vitro and in vivo characterization of a Kunitz protease inhibitor domain of protease nexin 2 variant that inhibits factor XIa without inhibiting plasmin, J. Biotechnol., 330, 61-69, https://doi.org/10.1016/j.jbiotec.2021.02.016.

    Article  CAS  PubMed  Google Scholar 

  51. Colciaghi, F., Marcello, E., Borroni, B., Zimmermann, M., Caltagirone, C., et al. (2004) Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer’s disease, Neurology, 62, 498-501, https://doi.org/10.1212/01.wnl.0000106953.49802.9c.

    Article  CAS  PubMed  Google Scholar 

  52. Chen, M., Inestrosa, N. C., Ross, G. S., and Fernandez, H. L. (1995) Platelets are the primary source of amyloid β-peptide in human blood, Biochem. Biophys. Res. Commun., 213, 96-103, https://doi.org/10.1006/bbrc.1995.2103.

    Article  CAS  PubMed  Google Scholar 

  53. Inyushin, M. Y., Sanabria, P., Rojas, L., Kucheryavykh, Y., and Kucheryavykh, L. (2017) Aβ peptide originated from platelets promises new strategy in anti-Alzheimer’s drug development, Biomed. Res. Int., 2017, 3948360, https://doi.org/10.1155/2017/3948360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Casoli, T., Di Stefano, G., Giorgetti, B., Grossi, Y., Balietti, M., et al. (2007) Release of β-amyloid from high‐density platelets: implications for Alzheimer’s disease pathology, Ann. N Y Acad. Sci., 1096, 170-178, https://doi.org/10.1196/annals.1397.082.

    Article  CAS  PubMed  Google Scholar 

  55. Schindler, S. E., Bollinger, J. G., Ovod, V., Mawuenyega, K. G., Li, Y., et al. (2019) High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis, Neurology, 93, e1647-e1659, https://doi.org/10.1212/WNL.0000000000008081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Portelius, E., Tran, A. J., Andreasson, U., Persson, R., Brinkmalm, G., et al. (2007) Characterization of amyloid β peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry, J. Proteome Res., 6, 4433-4439, https://doi.org/10.1021/pr0703627.

    Article  CAS  PubMed  Google Scholar 

  57. Gao, Y., Tan, L., Yu, J. T., and Tan, L. (2018) Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies, Curr. Alzheimer Res., 15, 283-300, https://doi.org/10.2174/1567205014666170417111859.

    Article  CAS  PubMed  Google Scholar 

  58. Gong, C. X., Liu, F., Grundke-Iqbal, I., and Iqbal, K. (2005) Post-translational modifications of tau protein in Alzheimer’s disease, J. Neural Transm., 112, 813-838, https://doi.org/10.1007/s00702-004-0221-0.

    Article  CAS  PubMed  Google Scholar 

  59. Iqbal, K., Liu, F., Gong, C. X., and Grundke-Iqbal, I. (2010) Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 7, 656-664, https://doi.org/10.2174/156720510793611592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Souza, L. C., Chupin, M., Lamari, F., Jardel, C., Leclercq, D., et al. (2012) CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease, Neurobiol. Aging, 33, 1253-1257, https://doi.org/10.1016/j.neurobiolaging.2011.02.022.

    Article  CAS  PubMed  Google Scholar 

  61. Seppälä, T. T., Nerg, O., Koivisto, A. M., Rummukainen, J., Puli, L., et al. (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings, Neurology, 78, 1568-1575, https://doi.org/10.1212/WNL.0b013e3182563bd0.

    Article  CAS  PubMed  Google Scholar 

  62. Barthélemy, N. R., Li, Y., Joseph-Mathurin, N., Gordon, B. A., Hassenstab, J., et al. (2020) A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease, Nat. Med., 26, 398-407, https://doi.org/10.1038/s41591-020-0781-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Janelidze, S., Stomrud, E., Smith, R., Palmqvist, S., Mattsson, N., et al. (2020) Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease, Nat. Commun., 11, 1-12, https://doi.org/10.1038/s41467-020-15436-0.

    Article  CAS  Google Scholar 

  64. Zetterberg, H., Wilson, D., Andreasson, U., Minthon, L., Blennow, K., et al. (2013) Plasma tau levels in Alzheimer’s disease, Alzheimers Res. Ther., 5, 1-3, https://doi.org/10.1186/alzrt163.

    Article  CAS  Google Scholar 

  65. Sjogren, M., Vanderstichele, H., Ågren, H., Zachrisson, O., Edsbagge, M., et al. (2001) Tau and Aβ42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values, Clin. Chem., 47, 1776-1781, https://doi.org/10.1093/clinchem/47.10.1776.

    Article  CAS  PubMed  Google Scholar 

  66. Mielke, M. M., Hagen, C. E., Xu, J., Chai, X., Vemuri, P., et al. (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau-and amyloid-positron emission tomography, Alzheimer’s Dement., 14, 989-997, https://doi.org/10.1016/j.jalz.2018.02.013.

    Article  Google Scholar 

  67. Karikari, T. K., Pascoal, T. A., Ashton, N. J., Janelidze, S., Benedet, A. L., et al. (2020) Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts, Lancet Neurol., 19, 422-433, https://doi.org/10.1016/S1474-4422(20)30071-5.

    Article  CAS  PubMed  Google Scholar 

  68. Palmqvist, S., Janelidze, S., Quiroz, Y. T., Zetterberg, H., Lopera, F., et al. (2020) Discriminative accuracy of plasma phospho-tau217 for Alzheimer’s disease vs other neurodegenerative disorders, JAMA, 324, 772-781, https://doi.org/10.1001/jama.2020.12134.

    Article  CAS  PubMed  Google Scholar 

  69. Sato, C., Barthélemy, N. R., Mawuenyega, K. G., Patterson, B. W., Gordon, B. A., et al. (2018) Tau kinetics in neurons and the human central nervous system, Neuron, 97, 1284-1298, https://doi.org/10.1016/j.neuron.2018.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Randall, J., Mörtberg, E., Provuncher, G. K., Fournier, D. R., Duffy, D. C., et al. (2013) Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study, Resuscitation, 84, 351-356, https://doi.org/10.1016/j.resuscitation.2012.07.027.

    Article  CAS  PubMed  Google Scholar 

  71. Shi, M., Sui, Y. T., Peskind, E. R., Li, G., Hwang, H., et al. (2011) Salivary tau species are potential biomarkers of Alzheimer’s disease, J. Alzheimer’s Dis., 27, 299-305, https://doi.org/10.3233/JAD-2011-110731.

    Article  CAS  Google Scholar 

  72. Davidsson, P., and Blennow, K. (1998) Neurochemical dissection of synaptic pathology in Alzheimer’s disease, Int. Psychogeriatr., 10, 11-23, https://doi.org/10.1017/s1041610298005110.

    Article  CAS  PubMed  Google Scholar 

  73. Kvartsberg, H., Duits, F. H., Ingelsson, M., Andreasen, N., Öhrfelt, A., et al. (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease, Alzheimer’s Dement., 11, 1180-1190, https://doi.org/10.1016/j.jalz.2014.10.009.

    Article  Google Scholar 

  74. Hellwig, K., Kvartsberg, H., Portelius, E., Andreasson, U., Oberstein, T. J., et al. (2015) Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease, Alzheimer’s Res. Ther., 7, 1-8, https://doi.org/10.1186/s13195-015-0161-y.

    Article  CAS  Google Scholar 

  75. Portelius, E., Zetterberg, H., Skillbäck, T., Törnqvist, U., Andreasson, U., et al. (2015) Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease, Brain, 138, 3373-3385, https://doi.org/10.1093/brain/awv267.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wellington, H., Paterson, R. W., Portelius, E., Törnqvist, U., Magdalinou, N., et al. (2016) Increased CSF neurogranin concentration is specific to Alzheimer’s disease, Neurology, 86, 829-835, https://doi.org/10.1212/WNL.0000000000002423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Öhrfelt, A., Brinkmalm, A., Dumurgier, J., Brinkmalm, G., Hansson, O., et al. (2016) The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease, Alzheimer’s Res. Ther., 8, 1-10, https://doi.org/10.1186/s13195-016-0208-8.

    Article  CAS  Google Scholar 

  78. Goetzl, E. J., Kapogiannis, D., Schwartz, J. B., Lobach, I. V., Goetzl, L., et al. (2016) Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease, FASEB J., 30, 4141-4148, https://doi.org/10.1096/fj.201600816R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brinkmalm, A., Brinkmalm, G., Honer, W. G., Frölich, L., Hausner, L., et al. (2014) SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease, Mol. Neurodegener., 9, 1-13, https://doi.org/10.1186/1750-1326-9-53.

    Article  CAS  Google Scholar 

  80. Lashley, T., Schott, J. M., Weston, P., Murray, C. E., Wellington, H., et al. (2018) Molecular biomarkers of Alzheimer’s disease: progress and prospect, Dis. Model. Mech., 11, dmm031781, https://doi.org/10.1242/dmm.031781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wennström, M., Surova, Y., Hall, S., Nilsson, C., Minthon, L., et al. (2015) The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with Lewy bodies, PLoS One, 10, e0135458, https://doi.org/10.1371/journal.pone.0135458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Janelidze, S., Hertze, J., Zetterberg, H., Landqvist Waldö, M., Santillo, A., et al. (2016) Cerebrospinal fluid neurogranin and YKL‐40 as biomarkers of Alzheimer’s disease, Ann. Clin. Transl. Neurol., 3, 12-20, https://doi.org/10.1002/acn3.266.

    Article  CAS  PubMed  Google Scholar 

  83. Morenas-Rodríguez, E., Li, Y., Nuscher, B., Franzmeier, N., Xiong, C., et al. (2022) Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study, Lancet Neurol., 21, 329-341, https://doi.org/10.1016/S1474-4422(22)00027-8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mattsson, N., Tabatabaei, S., Johansson, P., Hansson, O., Andreasson, U., et al. (2011) Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility, Neuromolecular Med., 13, 151-159, https://doi.org/10.1007/s12017-011-8147-9.

    Article  CAS  PubMed  Google Scholar 

  85. Tarawneh, R., D’Angelo, G., Macy, E., Xiong, C., Carter, D., et al. (2011) Visinin‐like protein‐1: diagnostic and prognostic biomarker in Alzheimer’s disease, Ann. Neurol., 70, 274-285, https://doi.org/10.1002/ana.22448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khalil, M., Teunissen, C. E., Otto, M., Piehl, F., Sormani, M. P., et al. (2018) Neurofilaments as biomarkers in neurological disorders, Nat. Rev. Neurol., 14, 577-589, https://doi.org/10.1038/s41582-018-0058-z.

    Article  CAS  PubMed  Google Scholar 

  87. Gisslén, M., Price, R. W., Andreasson, U., Norgren, N., Nilsson, S., et al. (2016) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study, EBioMedicine, 3, 135-140, https://doi.org/10.1016/j.ebiom.2015.11.036.

    Article  PubMed  Google Scholar 

  88. Mattsson, N., Andreasson, U., Zetterberg, H., Blennow, K., and Alzheimer’s Disease Neuroimaging Initiative (2017) Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer’s disease, JAMA Neurol., 74, 557-566, https://doi.org/10.1001/jamaneurol.2016.6117.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fernandes, B. S., Steiner, J., Berk, M., Molendijk, M. L., Gonzalez-Pinto, A., et al. (2015) Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications, Mol. Psychiatry, 20, 1108-1119, https://doi.org/10.1038/mp.2014.117.

    Article  CAS  PubMed  Google Scholar 

  90. Qin, X. Y., Cao, C., Cawley, N. X., Liu, T. T., Yuan, J., et al. (2017) Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N = 7277), Mol. Psychiatry, 22, 312-320, https://doi.org/10.1038/mp.2016.62.

    Article  CAS  PubMed  Google Scholar 

  91. Balietti, M., Giuli, C., Casoli, T., Fabbietti, P., and Conti, F. (2020) Is blood brain-derived neurotrophic factor a useful biomarker to monitor mild cognitive impairment patients? Rejuvenation Res., 23, 411-419, https://doi.org/10.1089/rej.2020.2307.

    Article  CAS  PubMed  Google Scholar 

  92. Morozova, A., Zorkina, Y., Abramova, O., Pavlova, O., Pavlov, K., et al. (2022) Neurobiological highlights of cognitive impairment in psychiatric disorders, Int. J. Mol. Sci., 23, 1217, https://doi.org/10.3390/ijms23031217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen, X. N., Niu, L. D., Wang, Y. J., Cao, X. P., Liu, Q., et al. (2019) Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies, J. Neurol. Neurosurg. Psychiatry, 90, 590-598, https://doi.org/10.1136/jnnp-2018-319148.

    Article  PubMed  Google Scholar 

  94. Marques, S. C. F., Lemos, R., Ferreiro, E., Martins, M., De Mendonca, A., et al. (2012) Epigenetic regulation of BACE1 in Alzheimer’s disease patients and in transgenic mice, Neuroscience, 220, 256-266, https://doi.org/10.1016/j.neuroscience.2012.06.029.

    Article  CAS  PubMed  Google Scholar 

  95. Zhong, Z., Ewers, M., Teipel, S., Bürger, K., Wallin, A., et al. (2007) Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment, Arch. Gen. Psychiatry, 64, 718-726, https://doi.org/10.1001/archpsyc.64.6.718.

    Article  CAS  PubMed  Google Scholar 

  96. Bellenguez, C., Grenier-Boley, B., and Lambert, J. C. (2020) Genetics of Alzheimer’s disease: where we are, and where we are going, Curr. Opin. Neurobiol., 61, 40-48, https://doi.org/10.1016/j.conb.2019.11.024.

    Article  CAS  PubMed  Google Scholar 

  97. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., et al. (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing, Nat. Genet., 51, 414-430, https://doi.org/10.1038/s41588-019-0358-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karch, C. M., and Goate, A. M. (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis, Biol. Psychiatry, 77, 43-51, https://doi.org/10.1016/j.biopsych.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J., Basak, J. M., and Holtzman, D. M. (2009) The role of apolipoprotein E in Alzheimer’s disease, Neuron, 63, 287-303, https://doi.org/10.1016/j.neuron.2009.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rehiman, S. H., Lim, S. M., Neoh, C. F., Majeed, A. B. A., Chin, A. V., et al. (2020) Proteomics as a reliable approach for discovery of blood-based Alzheimer’s disease biomarkers: a systematic review and meta-analysis, Ageing Res. Rev., 60, 101066, https://doi.org/10.1016/j.arr.2020.101066.

    Article  CAS  PubMed  Google Scholar 

  101. Nazeri, A., Ganjgahi, H., Roostaei, T., Nichols, T., Zarei, M., et al. (2014) Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer’s disease, Neuroimage, 102, 657-665, https://doi.org/10.1016/j.neuroimage.2014.08.041.

    Article  CAS  PubMed  Google Scholar 

  102. Guo, L. H., Alexopoulos, P., Wagenpfeil, S., Kurz, A., Perneczky, R., et al. (2013) Plasma proteomics for the identification of Alzheimer’s disease, Alzheimer Dis. Assoc. Disord., 27, 337-342, https://doi.org/10.1097/WAD.0b013e31827b60d2.

    Article  CAS  PubMed  Google Scholar 

  103. Mancera-Páez, O., Estrada-Orozco, K., Mahecha, M. F., Cruz, F., Bonilla-Vargas, K., et al. (2019) Differential methylation in APOE (Chr19; Exon four; from 44,909,188 to 44,909,373/hg38) and increased apolipoprotein E plasma levels in subjects with mild cognitive impairment, Int. J. Mol. Sci., 20, 1394, https://doi.org/10.3390/ijms20061394.

    Article  CAS  PubMed Central  Google Scholar 

  104. Calero, M., Rostagno, A., Matsubara, E., Zlokovic, B., Frangione, B., et al. (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease, Microsc. Res. Tech., 50, 305-315, https://doi.org/10.1002/1097-0029(20000815)50:4<305::AID-JEMT10>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  105. DeMattos, R. B., O’dell, M. A., Parsadanian, M., Taylor, J. W., Harmony, J. A., et al. (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease, Proc. Natl Acad. Sci. USA, 99, 10843-10848, https://doi.org/10.1073/pnas.162228299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thambisetty, M., Simmons, A., Velayudhan, L., Hye, A., Campbell, J., et al. (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer’s disease, Arch. Gen. Psychiatry, 67, 739-748, https://doi.org/10.1001/archgenpsychiatry.2010.78.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yu, J. T., and Tan, L. (2012) The role of clusterin in Alzheimer’s disease: pathways, pathogenesis, and therapy, Mol. Neurobiol., 45, 314-326, https://doi.org/10.1007/s12035-012-8237-1.

    Article  CAS  PubMed  Google Scholar 

  108. Morgan, A. R., Touchard, S., Leckey, C., O’Hagan, C., Nevado-Holgado, A. J., et al. (2019) Inflammatory biomarkers in Alzheimer’s disease plasma, Alzheimer’s Dement., 15, 776-787, https://doi.org/10.1016/j.jalz.2019.03.007.

    Article  Google Scholar 

  109. Toropygin, I. Y., Kugaevskaya, E. V., Mirgorodskaya, O. A., Elisseeva, Y. E., Kozmin, Y. P., et al. (2008) The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer’s Aβ-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 22, 231-239, https://doi.org/10.1002/rcm.3357.

    Article  CAS  PubMed  Google Scholar 

  110. Akatsu, H., Ogawa, N., Kanesaka, T., Hori, A., Yamamoto, T., et al. (2011) Higher activity of peripheral blood angiotensin-converting enzyme is associated with later-onset of Alzheimer’s disease, J. Neurol. Sci., 300, 67-73, https://doi.org/10.1016/j.jns.2010.09.030.

    Article  CAS  PubMed  Google Scholar 

  111. Miners, S., Ashby, E., Baig, S., Harrison, R., Tayler, H., et al. (2009) Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes, Am. J. Transl. Res., 1, 163-177.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., et al. (2018) Inflammation as a central mechanism in Alzheimer’s disease, Alzheimer’s Dement., 4, 575-590, https://doi.org/10.1016/j.trci.2018.06.014.

    Article  Google Scholar 

  113. Kiddle, S. J., Sattlecker, M., Proitsi, P., Simmons, A., Westman, E., et al. (2014) Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study, J. Alzheimer’s Dis., 38, 515-531, https://doi.org/10.3233/JAD-130380.

    Article  CAS  Google Scholar 

  114. Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L. P., et al. (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Res., 49, D394-D403, https://doi.org/10.1093/nar/gkaa1106.

    Article  CAS  PubMed  Google Scholar 

  115. Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., et al. (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins, Nat. Med., 13, 1359-1362, https://doi.org/10.1038/nm1653.

    Article  CAS  PubMed  Google Scholar 

  116. Doecke, J. D., Laws, S. M., Faux, N. G., Wilson, W., Burnham, S. C., et al. (2012) Blood-based protein biomarkers for diagnosis of Alzheimer’s disease, Arch. Neurol., 69, 1318-1325, https://doi.org/10.1001/archneurol.2012.1282.

    Article  PubMed  PubMed Central  Google Scholar 

  117. O’Bryant, S. E., Xiao, G., Barber, R., Reisch, J., Doody, R., et al. (2010) A serum protein-based algorithm for the detection of Alzheimer disease, Arch. Neurol., 67, 1077-1081, https://doi.org/10.1001/archneurol.2010.215.

    Article  PubMed  PubMed Central  Google Scholar 

  118. O’Bryant, S. E., Edwards, M., Johnson, L., Hall, J., Villarreal, A. E., et al. (2016) A blood screening test for Alzheimer’s disease, Alzheimer’s Dement., 3, 83-90, https://doi.org/10.1016/j.dadm.2016.06.004.

    Article  Google Scholar 

  119. Hye, A., Riddoch-Contreras, J., Baird, A. L., Ashton, N. J., Bazenet, C., et al. (2014) Plasma proteins predict conversion to dementia from prodromal disease, Alzheimer’s Dement., 10, 799-807, https://doi.org/10.1016/j.jalz.2014.05.1749.

    Article  Google Scholar 

  120. Yu, S., Liu, Y. P., Liu, H. L., Li, J., Xiang, Y., et al. (2018) Serum protein-based profiles as novel biomarkers for the diagnosis of Alzheimer’s disease, Mol. Neurobiol., 55, 3999-4008, https://doi.org/10.1007/s12035-017-0609-0.

    Article  CAS  PubMed  Google Scholar 

  121. Shi, L., Buckley, N.J., Bos, I., Engelborghs, S., Sleegers, K., et al. (2021) Plasma proteomic biomarkers relating to Alzheimer’s disease: a meta-analysis based on our own studies, Front. Aging Neurosci., 13, 712545, https://doi.org/10.3389/fnagi.2021.712545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Henkel, A. W., Muller, K., Lewczuk, P., Muller, T., Marcus, K., et al. (2012) Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: A pilot study, J. Neural. Transm., 119, 779-788, https://doi.org/10.1007/s00702-012-0781-3.

    Article  CAS  PubMed  Google Scholar 

  123. Walke, K. A., Chen, J., Zhang, J., Fornage, M., Yang, Y., et al. (2021) Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk, Nat. Aging, 1, 473-489, https://doi.org/10.1038/s43587-021-00064-0.

    Article  Google Scholar 

  124. Whelan, C. D., Mattsson, N., Nagle, M. W., Vijayaraghavan, S., Hyde, C., et al. (2019) Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease, Acta Neuropathol. Commun., 7, 169, https://doi.org/10.1186/s40478-019-0795-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jiang, Y., Zhou, X., Ip, F. C., Chan, P., Chen, Y., et al. (2021) Large-scale proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging, Alzheimer’s Dement., 18, 88-102, https://doi.org/10.1002/alz.12369.

    Article  CAS  Google Scholar 

  126. Dayon, L., Wojcik, J., Galindo, N., Corthesy, J., Cominetti, O., et al. (2017) Plasma proteomic profiles of cerebrospinal fluid-defined Alzheimer’s disease pathology in older adults, J. Alzheimer’s Dis., 60, 1641-1652, https://doi.org/10.3233/JAD-170426.

    Article  CAS  Google Scholar 

  127. Dey, K.K., Wang, H., Niu, M., Bai, B., Wang, X., et al. (2019) Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease, Clin. Proteomics, 16, 16, https://doi.org/10.1186/s12014-019-9237-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, J. C., Han, S.H., Lee, H., Jeong, H., Byun, M. S., et al. (2019) Prognostic plasma protein panel for Aβ deposition in the brain in Alzheimer’s disease, Prog. Neurobiol., 183, 101690, https://doi.org/10.1016/j.pneurobio.2019.101690.

    Article  CAS  PubMed  Google Scholar 

  129. Ashton, N. J., Nevado-Holgado, A. J., Barber, I. S., Lynham, S., Gupta, V., et al. (2019) A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease, Sci. Adv., 5, eaau7220, https://doi.org/10.1126/sciadv.aau7220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, M., and Xia, W. (2020) Proteomic profiling of plasma and brain tissue from Alzheimer’s disease patients reveals candidate network of plasma biomarkers, J. Alzheimer’s Dis., 76, 349-368, https://doi.org/10.3233/JAD-200110.

    Article  CAS  Google Scholar 

  131. Jain, A. P., and Sathe, G. (2021) Proteomics landscape of Alzheimer’s disease, Proteomes, 9, 13, https://doi.org/10.3390/proteomes9010013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kitamura, Y., Usami, R., Ichichara, S., Kida, H., Satoh, M., et al. (2017) Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease, Neurol. Res., 39, 231-238, https://doi.org/10.1080/01616412.2017.1281195.

    Article  CAS  PubMed  Google Scholar 

  133. Kumar, A., Singh, S., Verma, A., and Mishra, V. N. (2018) Proteomics based identification of differential plasma proteins and changes in white matter integrity as markers in early detection of mild cognitive impaired subjects at high risk of Alzheimer’s disease, Neurosci. Lett., 676, 71-77, https://doi.org/10.1016/j.neulet.2018.04.015.

    Article  CAS  PubMed  Google Scholar 

  134. Zhao, X., Lejnine, S., Spond, J., Zhang, C., Ramaraj, T. C., et al. (2015) A candidate plasma protein classifier to identify Alzheimer’s disease, J. Alzheimer’s Dis., 43, 549-563, https://doi.org/10.3233/JAD-141149.

    Article  CAS  Google Scholar 

  135. Bader, J. M., Geyer, P. E., Müller, J. B., Strauss, M. T., Koch, M., et al. (2020) Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease, Mol. Syst. Biol., 16, e9356, https://doi.org/10.15252/msb.20199356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gaither, C., Popp, R., Mohammed, Y., and Bochers, C. H. (2020) Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry, Analyst, 145, 3634-3644, https://doi.org/10.1039/c9an01893j.

    Article  CAS  PubMed  Google Scholar 

  137. Ayton, S., Janelidze, S., Roberts, B., Palmqvist, S., Kalinowski, P., et al. (2021) Acute phase markers in CSF reveal inflammatory changes in Alzheimer’s disease that intersect with pathology, APOE ε4, sex and age, Prog. Neurobiol., 198, 101904, https://doi.org/10.1016/j.pneurobio.2020.101904.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Megagrant of Ministry of Science and Higher Education of the Russian Federation [Agreement with Skolkovo Institute of Science and Technology, no. 075-10-2022-090 (075-10-2019-083)].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.V.Z., A.S.K., S.I.G., and E.N.N.; analysis of publications, selection of material, N.V.Z., A.E.B., M.I.I., Y.B.F., and I.V.K.; data analysis and preparation of table and figures, N.V.Z., A.E.B., M.I.I., and A.S.K.; writing – original draft preparation, N.V.Z., A.E.B., M.I.I., and Y.B.F.; writing – review and editing, A.S.K., I.V.K., S.I.G., and E.N.N. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Natalia V. Zakharova or Alexey S. Kononikhin.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not include the experiments involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, N.V., Bugrova, A.E., Indeykina, M.I. et al. Proteomic Markers and Early Prediction of Alzheimer’s Disease. Biochemistry Moscow 87, 762–776 (2022). https://doi.org/10.1134/S0006297922080089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080089

Keywords

Navigation