Skip to main content
Log in

Investigation of the Antioxidant Properties of the Quaternized Chitosan Modified with a Gallic Acid Residue Using Peroxidase that Produces Reactive Oxygen Species

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chitosan modified with a (2-hydroxy-3-trimethylammonium) propyl group and gallic acid residue, or quaternized chitosan with gallic acid (QCG), was synthesized. Antioxidant properties of the produced QCG have been investigated. Peroxidase in combination with NADH and salicyl hydroxamate (SHAM) caused consumption of oxygen and production of H2O2 in aqueous solution as a result of O2 reduction in the peroxidase–oxidase reactions. The rates of O2 consumption and H2O2 generation were reduced in the presence of QCG. The antioxidant propyl gallate (PG) and superoxide dismutase (SOD) had the same effect, but not the quaternized chitosan (QC) without gallic acid. The effect of chitosan derivatives on the production of reactive oxygen species (ROS) in the cells of pea leaf epidermis and on the cell death detected by the destruction of cell nuclei, was investigated. QCG, QC, and SOD had no effect, while PG decreased the rate of ROS generation in the cells of the epidermis, which was induced by NADH with SHAM or by menadione. QCG and QC prevented destruction of the guard cell nuclei in the pea leaf epidermis that was caused by NADH with SHAM or by KCN. SOD had no effect on the destruction of nuclei, while the effect of PG depended on the inducer of the cell death. Suppression of the destruction of guard cell nuclei by chitosan derivatives was associated not with their antioxidant effect, but with the disruption of the plasma membrane of the cells. The results obtained have shown that QCG exhibits antioxidant properties in solutions, but does not prevent generation of ROS in the plant cells. The mechanism of antioxidant effect of QCG is similar to that of PG and SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

Amplex Red:

N-acetyl-3,7-dihydroxyphenoxazine

DCF:

2′,7′-dichlorofluorescein

DCFH-DA:

2′,7′-dichlorofluorescin diacetate

PG:

propyl gallate

PI:

propidium iodide

QC:

quaternized chitosan

QCG:

quaternized chitosan with gallic acid

ROS:

reactive oxygen species

SHAM:

salicyl hydroxamate

SOD:

superoxide dismutase

References

  1. Wang, W., Xue, C., and Mao, X. (2020) Chitosan: Structural modification, biological activity and application, Int. J. Biol. Macromol., 164, 4532-4546, https://doi.org/10.1016/j.ijbiomac.2020.09.042.

    Article  CAS  PubMed  Google Scholar 

  2. Pal, K., Bharti, D., Sarkar, P., Anis, A., Kim, D., et al. (2021) Selected applications of chitosan composites, Int. J. Mol. Sci., 22, 10968, https://doi.org/10.3390/ijms222010968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malerba, M., and Cerana, R. (2016) Chitosan effects on plant systems, Int. J. Mol. Sci., 17, 996, https://doi.org/10.3390/ijms17070996.

    Article  CAS  PubMed Central  Google Scholar 

  4. Andreica, B. I., Cheng, X., and Marin, L. (2020) Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization, Eur. Polym. J., 139, 110016, https://doi.org/10.1016/j.eurpolymj.2020.110016.

    Article  CAS  Google Scholar 

  5. Shagdarova, B., Lunkov, A., Il’ina, A., and Varlamov, V. (2019) Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium) propyl] chloride chitosan derivatives, Int. J. Biol. Macromol., 124, 994-1001, https://doi.org/10.1016/j.ijbiomac.2018.11.209.

    Article  CAS  PubMed  Google Scholar 

  6. Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., et al. (2009) Antioxidant properties of some different molecular weight chitosans, Carbohydr. Res., 344, 1690-1696, https://doi.org/10.1016/j.carres.2009.05.006.

    Article  CAS  PubMed  Google Scholar 

  7. Luan, F., Wei, L., Zhang, J., Tan, W., Chen, Y., et al. (2018) Preparation and characterization of quaternized chitosan derivatives and assessment of their antioxidant activity, Molecules, 23, 516, https://doi.org/10.3390/molecules23030516.

    Article  CAS  PubMed Central  Google Scholar 

  8. Il’ina, A. V., and Varlamov, V. P. (2016) Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (Review), Appl. Biochem. Microbiol., 52, 1-14, https://doi.org/10.1134/S0003683816010063.

    Article  CAS  Google Scholar 

  9. Yen, G.-C., Duh, P.-D., and Tsai, H.-L. (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid, Food Chem., 79, 307-313, https://doi.org/10.1016/S0308-8146(02)00145-0.

    Article  CAS  Google Scholar 

  10. Yilmaz, Y., and Toledo, R. T. (2004) Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid, J. Agric. Food Chem., 52, 255-260, https://doi.org/10.1021/jf030117h.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes-Negreiros, M. M., Batista, L. A. N. C., Viana, R. L. S., Sabry, D. A., Paiva, A. A. O., et al. (2020) Gallic acid-Laminarin conjugate is a better antioxidant than sulfated or carboxylated laminarin, Antioxidants, 9, 1192, https://doi.org/10.3390/antiox9121192.

    Article  CAS  PubMed Central  Google Scholar 

  12. Xie, M., Hu, B., Wang, Y., and Zeng, X. (2014) Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer, J. Agric. Food Chem., 62, 9128-9136, https://doi.org/10.1021/jf503207s.

    Article  CAS  PubMed  Google Scholar 

  13. Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A. (2019) Application of chitosan on plant responses with special reference to abiotic stress, Physiol. Mol. Biol. Plants, 25, 313-326, https://doi.org/10.1007/s12298-018-0633-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zipfel, C. (2014) Plant pattern-recognition receptors, Trends Immunol., 35, 345-351, https://doi.org/10.1016/j.it.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  15. Ye, W., Munemasa, S., Shinya, T., Wu, W., Ma, T., et al. (2020) Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death, Proc. Natl. Acad. Sci. USA, 117, 20932-20942, https://doi.org/10.1073/pnas.1922319117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasanphan, W., and Chirachanchai, S. (2008) Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant, Carbohydr. Polym., 72, 169-177, https://doi.org/10.1016/j.carbpol.2007.08.002.

    Article  CAS  Google Scholar 

  17. Gomes, A., Fernandes, E., and Lima, J. L. F. C. (2005) Fluorescence probes used for detection of reactive oxygen species, J. Biochem. Biophys. Methods, 65, 45-80, https://doi.org/10.1016/j.jbbm.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  18. Rhee, S. G., Chang, T. S., Jeong, W., and Kang, D. (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells, Mol. Cells, 29, 539-549, https://doi.org/10.1007/s10059-010-0082-3.

    Article  CAS  PubMed  Google Scholar 

  19. LeBel, C.P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2′,7′-dichiorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227-231, https://doi.org/10.1021/tx00026a012.

    Article  CAS  PubMed  Google Scholar 

  20. Karlsson, M., Kurz, T., Brunk, U. T., Nilsson, S. E., and Frennesson, C. I. (2010) What does the commonly used DCF test for oxidative stress really show?, Biochem. J., 428, 183-190, https://doi.org/10.1042/BJ20100208.

    Article  CAS  PubMed  Google Scholar 

  21. Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Y. V., et al. (2003) Participation of chloroplasts in plant apoptosis, Biosci. Rep., 23, 103-117, https://doi.org/10.1023/a:1025576307912.

    Article  CAS  PubMed  Google Scholar 

  22. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., et al. (1992) Features of apoptotic cells measured by flow cytometry, Cytometry, 13, 795-808, https://doi.org/10.1002/cyto.990130802.

    Article  CAS  PubMed  Google Scholar 

  23. Yamazaki, I., and Yokota, K. (1973) Oxidation states of peroxidase, Mol. Cell. Biochem., 2, 39-52, https://doi.org/10.1007/BF01738677.

    Article  CAS  PubMed  Google Scholar 

  24. Brooks, J. L. (1983) Stimulation of peroxidase reactions by hydroxamates, Biochem. Biophys. Res. Comm., 116, 916-921, https://doi.org/10.1016/s0006-291x(83)80229-0.

    Article  CAS  PubMed  Google Scholar 

  25. Hauser, M. J. B., and Olsen, L. F. (1998) The role of naturally occurring phenols in inducing oscillations in the peroxidase-oxidase reaction, Biochemistry, 37, 2458-2469, https://doi.org/10.1021/bi972424k.

    Article  CAS  PubMed  Google Scholar 

  26. Samuilov, V. D., and Kiselevsky, D. B. (2016) Salicylhydroxamic acid enhances the NADH-oxidase activity of peroxidase in pea mitochondrial and chloroplast suspensions, Mosc. Univ. Biol. Sci. Bull., 71, 19-23, https://doi.org/10.3103/S096392516010089.

    Article  Google Scholar 

  27. Lee-Ruff, E. (1977) The organic chemistry of superoxide, Chem. Soc. Rev., 6, 195-214, https://doi.org/10.1039/CS9770600195.

    Article  CAS  Google Scholar 

  28. Jamet, E., Canut, H., Boudart, G., and Pont-Lezica, R. F. (2006) Cell wall proteins: a new insight through proteomics, Trends Plant Sci., 11, 33-39, https://doi.org/10.1016/j.tplants.2005.11.006.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Ma, L., Cao, D., Gong, Z., Fan, J., et al. (2021) Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics, BMC Plant Biol., 21, 384, https://doi.org/10.1186/s12870-021-03166-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldberg, B., and Stern, A. (1976) Production of superoxide anion during the oxidation of hemoglobin by menadione, Biochim. Biophys. Acta, 437, 628-632, https://doi.org/10.1016/0304-4165(76)90029-5.

    Article  CAS  PubMed  Google Scholar 

  31. Rosen, G. M., and Freeman, B. A. (1984) Detection of superoxide generated by endothelial cells, Proc. Natl. Acad. Sci. USA, 81, 7269-7273, https://doi.org/10.1073/pnas.81.23.7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., et al. (2006) H2O2 intensifies CN-induced apoptosis in pea leaves, Biochemistry (Moscow), 71, 384-394, https://doi.org/10.1134/s0006297906040067.

    Article  CAS  Google Scholar 

  33. Moore, A. L., and Siedow, J. N. (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria, Biochim. Biophys. Acta, 1059, 121-140, https://doi.org/10.1016/s0005-2728(05)80197-5.

    Article  CAS  PubMed  Google Scholar 

  34. Popov, V. N., Simonian, R. A., Skulachev, V. P., and Starkov, A. A. (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria, FEBS Lett., 415, 87-90, https://doi.org/10.1016/s0014-5793(97)01099-5.

    Article  CAS  PubMed  Google Scholar 

  35. Maxwell, D. P., Wang, Y., and McIntosh, L. (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci. USA, 96, 8271-8276, https://doi.org/10.1073/pnas.96.14.8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kiselevsky, D. B., and Samuilov, V. D. (2019) Permeability of the plasma membrane for propidium iodide and destruction of cell nuclei in the epidermis of pea leaves: The effect of polyelectrolytes and detergents, Mosc. Univ. Biol. Sci. Bull., 74, 147-153, https://doi.org/10.3103/S0096392519030052.

    Article  Google Scholar 

  37. Kiselevsky, D. B., Shagdarova, B. Ts., Varlamov, V. P., Samuilova, O. V., and Samuilov, V. D. (2021) Effect of low molecular weight chitosan on cells of epidermis from pea leaves, Mosc. Univ. Biol. Sci. Bull., 76, 14-19, https://doi.org/10.3103/S0096392521010016.

    Article  Google Scholar 

  38. Deeble, D. J., Parson, B. J., Phillips, G. O., Schuchmann, H.-P., and von Sonntag, C. (1988) Superoxide radical reactions in aqueous solutions of pyrogallol and n-propyl gallate: the involvement of phenoxyl radicals. A pulse radiolysis study, Int. J. Radiat. Biol., 54, 179-193.

    Article  CAS  Google Scholar 

  39. Reddan, J. R., Giblin, F. J., Sevilla, M., Padgaonkar, V., Dziedzic, D. C., et al. (2003) Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult, Exp. Eye Res., 76, 49-59, https://doi.org/10.1016/s0014-4835(02)00256-7.

    Article  CAS  PubMed  Google Scholar 

  40. Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., et al. (2009) Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure, J. Agric. Food Chem., 57, 5933-5938, https://doi.org/10.1021/jf900778u.

    Article  CAS  PubMed  Google Scholar 

  41. Pasanphan, W., Buettner, G. R., and Chirachanchai, S. (2010) Chitosan gallate as a novel potential polysaccharide antioxidant: an EPR study, Carbohydr. Res., 345, 132-140, https://doi.org/10.1016/j.carres.2009.09.038.

    Article  CAS  PubMed  Google Scholar 

  42. Ren, J., Li, Q., Dong, F., Feng, Y., and Guo, Z. (2013) Phenolic antioxidants-functionalized quaternized chitosan: synthesis and antioxidant properties, Int. J. Biol. Macromol., 53, 77-81, https://doi.org/10.1016/j.ijbiomac.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  43. Hu, Q., Wang, T., Zhou, M., Xue, J., and Luo, Y. (2016) In vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method, J. Agric. Food Chem., 64, 5893-5900, https://doi.org/10.1021/acs.jafc.6b02255.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y., Xie, M., Ma, G., Fang, Y., Yang, W., et al. (2019) The antioxidant and antimicrobial activities of different phenolic acids grafted onto chitosan, Carbohydr. Polym., 225, 115238, https://doi.org/10.1016/j.carbpol.2019.115238.

    Article  CAS  PubMed  Google Scholar 

  45. Bai, R., Yong, H., Zhang, X., Liu, J., and Liu, J. (2020) Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage, Int. J. Biol. Macromol., 143, 49-59, https://doi.org/10.1016/j.ijbiomac.2019.12.037.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University no. 121042600047-9, as well as in the frame of the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”. Preparation and analysis of the chitosan derivatives was partially supported by the Russian Foundation for Basic Research (project no. 20-016-00205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry B. Kiselevsky.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselevsky, D.B., Il’ina, A.V., Lunkov, A.P. et al. Investigation of the Antioxidant Properties of the Quaternized Chitosan Modified with a Gallic Acid Residue Using Peroxidase that Produces Reactive Oxygen Species. Biochemistry Moscow 87, 141–149 (2022). https://doi.org/10.1134/S0006297922020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020067

Keywords

Navigation