Skip to main content
Log in

Effect of Trehalose on Oligomeric State and Anti-Aggregation Activity of αB-Crystallin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

αB-Crystallin (αB-Cr), one of the main crystalline lens proteins, along with other crystallins maintains lens transparency suppressing protein aggregation and thus preventing cataractogenesis. αB-Cr belongs to the class of molecular chaperones; being expressed in many tissues it has a dynamic quaternary structure, which is essential for its chaperone-like activity. Shift in the equilibrium between ensembles of oligomers of different size allows regulating the chaperone activity. Trehalose is known to inhibit protein aggregation in vivo and in vitro, and it is widely used in biotechnology. The results of studying the effect of trehalose on the chaperone-like activity of crystallins can serve as a basis for the design of drugs delaying cataractogenesis. We have studied the trehalose effect on the quaternary structure and anti-aggregation activity of αB-Cr using muscle glycogen phosphorylase b (Phb) as a target protein. According to the dynamic light scattering data, trehalose affects the nucleation stage of Phb thermal aggregation at 48°C, and an increase in the αB-Cr adsorption capacity (AC0) is the main effect of trehalose on the aggregation process in the presence of the protein chaperone (AC0 increases 1.5-fold in the presence of 66 mM trehalose). According to the sedimentation analysis data, trehalose stabilizes the dimeric form of Phb at the stages of denaturation and dissociation and enhances the interaction of αB-Cr with the target protein. Moreover, trehalose shifts the equilibrium between the αB-Cr oligomers towards the smaller forms. Thus, trehalose affects the quaternary structure of αB-Cr and increases its anti-aggregation activity at the nucleation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

αB-Cr:

αB-crystallin

AUC:

analytical ultracentrifugation

DLS:

dynamic light scattering

Phb :

glycogen phosphorylase b

SV:

sedimentation velocity

References

  1. Muranov, K. O., and Ostrovsky, M. A. (2022) Molecular mechanisms of the lens transparency maintenance and clouding, Biochemistry (Moscow), 87, 106-120, https://doi.org/10.1134/S0006297922020031.

    Article  Google Scholar 

  2. Dilley, K. J., and Harding, J. J. (1975) Changes in proteins of the human lens in development and aging, Biochem. Biophys. Acta Protein Struct., 386, 391-408, https://doi.org/10.1016/0005-2795(75)90283-4.

    Article  CAS  Google Scholar 

  3. Siezen, R. J., Thomson, J. A., Kaplan, E. D., and Benedek, G. B. (1987) Human lens gamma-crystallins: Isolation, identification, and characterization of the expressed gene products, Proc. Natl. Acad. Sci. USA, 84, 6088-6092, https://doi.org/10.1073/pnas.84.17.6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fagerholm, P. P., Philipson, B. T., and Lindström, B. (1981) Normal human lens – the distribution of protein, Exp. Eye Res., 33, 615-620, https://doi.org/10.1016/s0014-4835(81)80101-7.

    Article  CAS  PubMed  Google Scholar 

  5. Sprague-Piercy, M. A., Rocha, M. A., Kwok, A. O., and Martin, R. W. (2021) α-Crystallins in the vertebrate eye lens: Complex oligomers and molecular chaperones, Annu. Rev. Phys. Chem., 72, 143-163, https://doi.org/10.1146/annurev-physchem-090419-121428.

    Article  CAS  PubMed  Google Scholar 

  6. Shamsi, A., Mohammad, T., Anwar, S., Hassan, Md. I., Ahmad, F., et al. (2020) Biophysical insights into implications of PEG-400 on the α-crystallin structure: Multispectroscopic and microscopic approach, ACS Omega, 5, 19210-19216, https://doi.org/10.1021/acsomega.0c02648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Derham, B. K., and Harding, J. J. (1999) Alpha-crystallin as a molecular chaperone, Prog. Retin. Eye Res., 18, 463-509, https://doi.org/10.1016/s1350-9462(98)00030-5.

    Article  CAS  PubMed  Google Scholar 

  8. Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone, Proc. Natl. Acad. Sci. USA, 89, 10449-10453, https://doi.org/10.1073/pnas.89.21.10449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haslbeck, M., Peschek, J., Buchner, J., and Weinkauf, S. (2016) Structure and function of α-crystallins: Traversing from in vitro to in vivo, Biochim. Biophys. Acta, 186, 149-166, https://doi.org/10.1016/j.bbagen.2015.06.008.

    Article  CAS  Google Scholar 

  10. Grosas, A. B., Rekas, A., Mata, J. P., Thorn, D. C., and Carver, J. A. (2020) The Aggregation of αB‑crystallin under crowding conditions is prevented by αA-crystallin: Implications for α-crystallin stability and lens transparency, J. Mol. Biol., 432, 5593-5613, https://doi.org/10.1016/j.jmb.2020.08.011.

    Article  CAS  PubMed  Google Scholar 

  11. Riedl M., Strauch, A., Catici, D. A. M., and Haslbeck, M. (2020) Proteinaceous transformers: Structural and functional variability of human sHsps, Int. J. Mol. Sci., 21, 5448, https://doi.org/10.3390/ijms21155448.

    Article  CAS  PubMed Central  Google Scholar 

  12. Inoue, R., Takata, T., Fujii, N., Ishii, K., Uchiyama, S., et al. (2016) New insight into the dynamical system of αB‑crystallin oligomers, Sci. Rep., 6, 29208, https://doi.org/10.1038/srep29208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayashi, J., and Carver, J. A. (2020) The multifaceted nature of αB‑Crystallin, Cell Stress Chaperones, 25, 639-654, https://doi.org/10.1007/s12192-020-01098-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Z., Wang, C., Li, Y., Zhao, C., Li, T., et al. (2018) Mechanistic insights into the switch of αB‑Crystallin chaperone activity and self-multimerization, J. Biol. Chem., 293, 14880-14890, https://doi.org/10.1074/jbc.RA118.004034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chebotareva, N. A., Eronina, T. B., Sluchanko, N. N., and Kurganov, B. I. (2015) Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of αB‑crystallin in crowded media, Int. J. Biol. Macromol., 76, 86-93, https://doi.org/10.1016/j.ijbiomac.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  16. Chebotareva, N. A., Eronina, T. B., Roman, S. G., Mikhaylova, V. V., Sluchanko, N. N., et al. (2019) Oligomeric state of αB‑crystallin under crowded conditions, Biochem. Biophys. Res. Commun., 508, 1101-1105, https://doi.org/10.1016/j.bbrc.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  17. Roman, S. G., Chebotareva, N. A., and Kurganov, B. I. (2017) Anti-aggregation activity of small heat shock proteins under crowded conditions, Int. J. Biol. Macromol., 100, 97-103, https://doi.org/10.1016/j.ijbiomac.2016.05.080.

    Article  CAS  PubMed  Google Scholar 

  18. Kuznetsova, I. M., Turoverov, K. K., and Uversky, V. N. (2014) What macromolecular crowding can do to a protein? Int. J. Mol. Sci., 15, 23090-23140, https://doi.org/10.3390/ijms151223090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark, A. R., Lubsen, N. H., and Slingsby, C. (2012) sHSP in the eye lens: protein mutations, cataract and proteostasis, Int. J. Biochem. Cell Biol., 44, 1687-1697, https://doi.org/10.1016/j.biocel.2012.02.015.

    Article  CAS  PubMed  Google Scholar 

  20. Berry, V., Francis, P., Reddy, M. A., Collyer, D., Vithana, E., et al. (2001) Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans, Am. J. Hum. Genet., 69, 1141-1145, https://doi.org/10.1086/324158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graw, J. (2009) Genetics of crystallins: Cataract and beyond, Exp. Eye Res., 88, 173-189, https://doi.org/10.1016/j.exer.2008.10.011.

    Article  CAS  PubMed  Google Scholar 

  22. Gerasimovich, E. S., Strelkov, S. V., and Gusev, N. B. (2017) Some properties of three αB‑Crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases, Biochimie, 142, 168-178, https://doi.org/10.1016/j.biochi.2017.09.008.

    Article  CAS  PubMed  Google Scholar 

  23. Makley, L. N., McMenimen, K. A., DeVree, B. T., Goldman, J. W., McGlasson, B. N., et al. (2015) Pharmacological chaperone for α-crystallin partially restores transparency in cataract models, Science, 350, 674-677, https://doi.org/10.1126/science.aac9145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghahramani, M., Yousefi, R., Krivandin, A., Muranov, K., Kurganov, B., et al. (2020) Structural and functional characterization of D109H and R69C mutant versions of human αB‑Crystallin: The biochemical pathomechanism underlying cataract and myopathy development, Int. J. Biol. Macromol., 146, 1142-1160, https://doi.org/10.1016/j.ijbiomac.2019.09.239.

    Article  CAS  PubMed  Google Scholar 

  25. Treweek, T. M., Meehan, S., Ecroyd, H., and Carver, J. A. (2015) Small heat-shock proteins: Important players in regulating cellular proteostasis, Cell. Mol. Life Sci., 72, 429-451, https://doi.org/10.1007/s00018-014-1754-5.

    Article  CAS  PubMed  Google Scholar 

  26. Kulig, M., and Ecroyd, H. (2012) The small heat-shock protein αB‑Crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin, Biochem. J., 448, 343-352, https://doi.org/10.1042/BJ20121187.

    Article  CAS  PubMed  Google Scholar 

  27. Chebotareva, N. A., Roman, S. G., Borzova, V. A., Eronina, T. B., Mikhaylova, V. V., et al. (2020) Chaperone-like activity of HSPB5: The effects of quaternary structure dynamics and crowding, Int. J. Mol. Sci., 21, 4940, https://doi.org/10.3390/ijms21144940.

    Article  CAS  PubMed Central  Google Scholar 

  28. Garvey, M., Ecroyd, H., Ray, N. J., Gerrard, J. A., and Carver, J. A. (2017) Functional amyloid protection in the eye lens: Retention of α-crystallin molecular chaperone activity after modification into amyloid fibrils, Biomolecules, 7, 67, https://doi.org/10.3390/biom7030067.

    Article  CAS  PubMed Central  Google Scholar 

  29. Moreau, K. L., and King, J. A. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention, Trends Mol. Med., 18, 273-282, https://doi.org/10.1016/j.molmed.2012.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ram, L., Mittal, C., Harsolia, R. S., and Yadav, J. K. (2020) Trehalose inhibits the heat-induced formation of the amyloid-like structure of soluble proteins isolated from human cataract lens, Protein J., 39, 509-518, https://doi.org/10.1007/s10930-020-09919-8.

    Article  CAS  PubMed  Google Scholar 

  31. Jain, N. K., and Roy, I. (2009) Effect of trehalose on protein structure, Protein Sci., 18, 24-36, https://doi.org/10.1002/pro.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., Shubin, V. V., Sluchanko, N. N., et al. (2019) Comparative effects of trehalose and 2-hydroxypropyl-β-cyclodextrin on aggregation of UV-irradiated muscle glycogen phosphorylase b, Biochimie, 165, 196-205, https://doi.org/10.1016/j.biochi.2019.08.006.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuo, T., Tsuchida, Y., and Morimoto, N. (2002) Trehalose eye drops in the treatment of dry eye syndrome, Ophthalmology, 109, 2024-2029, https://doi.org/10.1016/s0161-6420(02)01219-8.

    Article  PubMed  Google Scholar 

  34. Attanasio, F., Cascio, C., Fisichella, S., Nicoletti, V. G., Pignataro, B., et al. (2007) Trehalose effects on α-crystallin aggregates, Biochem. Biophys. Res. Commun., 354, 899-905, https://doi.org/10.1016/j.bbrc.2007.01.061.

    Article  CAS  PubMed  Google Scholar 

  35. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., and Kurganov, B. I. (2016) Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b, Int. J. Biol. Macromol., 92, 1252-1257, https://doi.org/10.1016/j.ijbiomac.2016.08.038.

    Article  CAS  PubMed  Google Scholar 

  36. Kurganov, B. I., Chebotareva, N. A., Kornilaev, B. A., Malikov, V. P., Orlov, V. N., et al. (2000) Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b, Biochemistry, 39, 13144-13152, https://doi.org/10.1021/bi000975w.

    Article  CAS  PubMed  Google Scholar 

  37. Kastenschmidt, L. L., Kastenschmidt, J., and Helmreich, E. (1968) Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b, Biochemistry, 7, 3590-3607, https://doi.org/10.1021/bi00850a037.

    Article  CAS  PubMed  Google Scholar 

  38. Mymrikov, E. V., Bukach, O. V., Seit-Nebi, A. S., and Gusev, N. B. (2010) The pivotal role of the beta 7 strand in the intersubunit contacts of different human small heat shock proteins, Cell Stress Chaperones, 15, 365-377, https://doi.org/10.1007/s12192-009-0151-8.

    Article  CAS  PubMed  Google Scholar 

  39. Kurganov, B. I. (2013) Antiaggregation activity of chaperones and its quantification, Biochemistry (Moscow), 78, 1554-1566, https://doi.org/10.1134/S0006297913130129.

    Article  CAS  Google Scholar 

  40. Kurganov, B. I. (2017) Quantification of anti-aggregation activity of chaperones, Int. J. Biol. Macromol., 100, 104-117, https://doi.org/10.1016/j.ijbiomac.2016.07.066.

    Article  CAS  PubMed  Google Scholar 

  41. Eronina, T. B., Chebotareva, N. A., Roman, S. G., Kleymenov, S. Y., Makeeva, V. F., et al. (2014) Thermal denaturation and aggregation of apoform of glycogen phosphorylase b. Effect of crowding agents and chaperones, Biopolymers, 101, 504-516, https://doi.org/10.1002/bip.22410.

    Article  CAS  PubMed  Google Scholar 

  42. Kurganov, B. I. (1998) Kinetics of heat aggregation of proteins, Biochemistry (Moscow), 63, 364-366.

    CAS  Google Scholar 

  43. Mikhaylova, V. V., Eronina, T. B., Chebotareva, N. A., Shubin, V. V., Kalacheva, D. I., and Kurganov, B. I. (2020) Effect of arginine on chaperone-like activity of HspB6 and monomeric 14-3-3ζ, Int. J. Mol. Sci., 21, 2039, https://doi.org/10.3390/ijms21062039.

    Article  CAS  PubMed Central  Google Scholar 

  44. Kurganov, B. I. (1982) Allosteric Enzymes. Kinetic Behaviour, John Wiley & Sons, Chichester, pp. 56-60.

  45. Brown, P. H., and Schuck, P. (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation, Biophys. J., 90, 4651-4661, https://doi.org/10.1529/biophysj.106.081372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chebotareva, N. A., Roman, S. G., and Kurganov, B. I. (2016) Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins, Biophys. Rev., 8, 397-407, https://doi.org/10.1007/s12551-016-0220-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kalmykov P. V. (posthumously) for technical assistance in conducting SV experiments.

Funding

N.A.C., T.B.E., V.V.M., S.G.R., and B.I.K. were financially supported by the Russian Science Foundation (project no. 21-14-00178) and K.V.T. – by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Chebotareva.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotareva, N.A., Eronina, T.B., Mikhaylova, V.V. et al. Effect of Trehalose on Oligomeric State and Anti-Aggregation Activity of αB-Crystallin. Biochemistry Moscow 87, 121–130 (2022). https://doi.org/10.1134/S0006297922020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020043

Keywords

Navigation