Skip to main content
Log in

Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure. The kinetic schemes of denaturation can include the multiple stages of conformational transitions in the protein oligomer and stages of reversible dissociation of the oligomer. In this case, the shape of the kinetic curve of denaturation or the shape of the melting curve registered by differential scanning calorimetry can vary with varying the protein concentration. The experimental data illustrating dissociative mechanism for irreversible thermal denaturation of oligomeric proteins have been summarized in the present review. The use of test systems based on thermal aggregation of oligomeric proteins for screening of agents possessing anti-aggregation activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  • Amani M, Moosavi-Movahedi AA, Floris G, Longu S, Mura A, Moosavi-Nejad SZ, Saboury AA, Ahmad F (2005) Comparative study of the conformational lock, dissociative thermal inactivation and stability of euphorbia latex and lentil seedling amine oxidases. Protein J 24:183–191. doi:10.1007/s10930-005-7842-5

    Article  CAS  PubMed  Google Scholar 

  • Atyaksheva LF, Pilipenko OS, Chukhrai ES, Poltorak OM (2008) Similarity of and differences between the mechanisms of thermal inactivation of β-galactosidases of different origins. Russ J Phys Chem A 82:864–869. doi:10.1134/S0036024408050300

    Article  CAS  Google Scholar 

  • Atyaksheva LF, Tarasevich BN, Chukhrai ES, Poltorak OM (2009) Thermal inactivation of alkali phosphatases under various conditions. Russ J Phys Chem A 83:318–323. doi:10.1134/S0036024409020307

    Article  CAS  Google Scholar 

  • Barford D, Johnson LN (1989) The allosteric transition of glycogen phosphorylase. Nature 340:609–616. doi:10.1038/340609a0

    Article  CAS  PubMed  Google Scholar 

  • Borzova VA, Markossian KA, Kara DA, Kurganov B (2015) Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin. Int J Biol Macromol 80:130–138. doi:10.1016/j.ijbiomac.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  • Borzova VA, Markossian KA, Chebotareva NA, Kleymenov SY, Poliansky NB, Muranov KO, Stein-Margolina VA, Shubin VV, Markov DI, Kurganov BI (2016) Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS ONE 11:e0153495. doi:10.1371/journal.pone.0153495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chebotareva NA (2007) Effect of molecular crowding on the enzymes of glycogenolysis. Biochem (Mosc) 72:1478–1490. doi:10.1134/S0006297907130056

    Article  CAS  Google Scholar 

  • Chebotareva NA, Harding SE, Winzor DJ (2001) Ultracentrifugal studies of the effect of molecular crowding by trimethylamine N-oxide on the self-association of muscle glycogen phosphorylase b. Eur J Biochem 268:506–513. doi:10.1046/j.1432-1327.2001.01838.x

    Article  CAS  PubMed  Google Scholar 

  • Chebotareva NA, Kurganov BI, Livanova NB (2004) Biochemical effects of molecular crowding. Biochem (Mosc) 69:1239–1251. doi:10.1007/PL00021763

    Article  CAS  Google Scholar 

  • Chebotareva NA, Kurganov BI, Harding SE, Winzor DJ (2005) Effect of osmolytes on the interaction of flavin adenine dinucleotide with muscle glycogen phosphorylase b. Biophys Chem 113:61–66. doi:10.1016/j.bpc.2004.07.040

    Article  CAS  PubMed  Google Scholar 

  • Chebotareva NA, Makeeva VF, Bazhina SG, Eronina TB, Gusev NB, Kurganov BI (2010) Interaction of Hsp27 with native phosphorylase kinase under crowding conditions. Macromol Biosci 10:783–789. doi:10.1002/mabi.200900397

    Article  CAS  PubMed  Google Scholar 

  • Chebotareva NA, Eronina TB, Roman SG, Poliansky NB, Muranov KO, Kurganov BI (2013) Effect of crowding and chaperones on self-association, aggregation and reconstitution of apophosphorylase b. Int J Biol Macromol 60:69–76. doi:10.1016/j.ijbiomac.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  • Chebotareva NA, Eronina TB, Sluchanko NN, Kurganov BI (2015a) Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of αB-crystallin in crowded media. Int J Biol Macromol 76:86–93. doi:10.1016/j.ijbiomac.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  • Chebotareva NA, Filippov DO, Kurganov BI (2015b) Effect of crowding on several stages of protein aggregation in test systems in the presence of α-crystallin. Int J Biol Macromol 80:358–365. doi:10.1016/j.ijbiomac.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  • Chukhrai ES, Atyaksheva LF (2010) A physical chemistry view of the activity, stability, and adsorption properties of enzymes. Russ J Phys Chem A 84:709–722. doi:10.1134/S0036024410050018

    Article  CAS  Google Scholar 

  • Curto LM, Angelani CR, Caramelo JJ, Delfino JM (2012) Truncation of a β-barrel scaffold dissociates intrinsic stability from its propensity to aggregation. Biophys J 103:1929–1939. doi:10.1016/j.bpj.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ (2001) Interpreting the effect of small uncharged solutes on protein-folding equilibria. Annu Rev Biophys Biomol Struct 30:271–306. doi:10.1146/annurev.biophys.30.1.271

    Article  CAS  PubMed  Google Scholar 

  • Delahaije RJ, Wierenga PA, Giuseppin ML, Gruppen H (2015) Comparison of heat-induced aggregation of globular proteins. J Agric Food Chem 63:5257–5265. doi:10.1021/acs.jafc.5b00927

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604. doi:10.1016/S0968-0004(01)01938-7

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28. doi:10.1038/425027a

    Article  CAS  PubMed  Google Scholar 

  • Eremin AN, Metelitsa DI, Shishko ZF, Mikhailova RV, Yasenko MI, Lobanok AG (2001) Thermal stability of glucose oxidase from Penicillium adametzii. Appl Biochem Microbiol 37:578–586. doi:10.1023/A:1012398900194

    Article  CAS  Google Scholar 

  • Eronina TB, Chebotareva NA, Kurganov BI (2005) Influence of osmolytes on inactivation and aggregation of muscle glycogen phosphorylase b by guanidine hydrochloride. Stimulation of protein aggregation under crowding conditions. Biochem (Mosc) 70:1020–1026. doi:10.1007/s10541-005-0219-8

    Article  CAS  Google Scholar 

  • Eronina TB, Chebotareva NA, Bazhina SG, Makeeva VF, Kleymenov SY, Kurganov BI (2009) Effect of proline on thermal inactivation, denaturation and aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biophys Chem 141:66–74. doi:10.1016/j.bpc.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  • Eronina TB, Chebotareva NA, Bazhina SG, Makeeva VF, Kleymenov SY, Naletova IN, Muronetz VI, Kurganov BI (2010) Effect of GroEL on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Macromol Biosci 10:768–774. doi:10.1002/mabi.200900396

    Article  CAS  PubMed  Google Scholar 

  • Eronina TB, Mikhaylova VV, Chebotareva NA, Kurganov BI (2016) Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b. Int J Biol Macromol 92:1252–1257. doi:10.1016/j.ijbiomac.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  • Fedurkina NV, Belousova LV, Mitskevich LG, Zhou HM, Chang Z, Kurganov BI (2006) Change in kinetic regime of protein aggregation with temperature increase. Thermal aggregation of rabbit muscle creatine kinase. Biochem (Mosc) 71:325–331. doi:10.1134/S000629790603014X

    Article  CAS  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23. doi:10.1016/S1359-0278(98)00002-9

    Article  CAS  PubMed  Google Scholar 

  • Fonin AV, Uversky VN, Ruznetsova IM, Turoverov KK (2016) Protein folding and stability in the presence of osmolytes. Biofizika 61:222–230

    CAS  PubMed  Google Scholar 

  • Frieden C (1967) Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism. J Biol Chem 242:4045–4052

    CAS  PubMed  Google Scholar 

  • Gao YS, Zhao TJ, Chen Z, Li C, Wang Y, Yan YB, Zhou HM (2010) Isoenzyme-specific thermostability of human cytosolic creatine kinase. Int J Biol Macromol 47:27–32. doi:10.1016/j.ijbiomac.2010.03.025

    Article  CAS  PubMed  Google Scholar 

  • Gruebele M, Dave K, Sukenik S (2016) Globular protein folding in vitro and in vivo. Annu Rev Biophys 45:233–251. doi:10.1146/annurev-biophys-062215-011236

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Edskes H (2012) Computational modeling of the relationship between amyloid and disease. Biophys Rev 4:205–222. doi:10.1007/s12551-012-0091-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649:127–139. doi:10.1016/S1570-9639(03)00167-5

    Article  CAS  PubMed  Google Scholar 

  • Harris SJ, Winzor DJ (1988) Thermodynamic nonideality as a probe of allosteric mechanisms: Preexistence of the isomerization equilibrium for rabbit muscle pyruvate kinase. Arch Biochem Biophys 265:458–465. doi:10.1016/0003-9861(88)90150-6

    Article  CAS  PubMed  Google Scholar 

  • Harutyunyan EG, Malashkevich VN, Tersyan SS, Kochkina VM, Torchinsky YM, Braunstein AE (1982) Three-dimensional structure at 3.2 Å resolution of the complex of cytosolic aspartate aminotransferase from chicken heart with 2-oxoglutarate. FEBS Lett 138:113–116. doi:10.1016/0014-5793(82)80407-9

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Moosavi-Movahedi AA, Ghourchian H, Amani M, Amanlou M, Chilaka FC (2005) Thermal dissociation and conformational lock of superoxide dismutase. J Biochem Mol Biol 38:533–538

    CAS  PubMed  Google Scholar 

  • Ibarra-Molero B, Sanchez-Ruiz JM (2008) Statistical differential scanning calorimetry: probing protein folding-unfolding ensembles. In: Muñoz V (ed) Protein folding, misfolding and aggregation: classical themes and novel approaches. Royal Society of Chemistry, Cambridge, pp 85–105

    Chapter  Google Scholar 

  • Jiao M, Li H-T, Chen J, Minton AP, Liang Y (2010) Attractive protein-polymer interactions markedly alter the effect of macromolecular crowding on protein association equilibria. Biophys J 99:914–923. doi:10.1016/j.bpj.2010.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109. doi:10.1016/j.abb.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  • Joly M (1965) A physicochemical approach to the denaturation of proteins. Academic, New York

    Google Scholar 

  • Kaplan W, Husler P, Klump H, Erhardt J, Sluis-Cremer N, Dirr H (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406. doi:10.1002/pro.5560060216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanova HA, Markossian KA, Kleimenov SY, Levitsky DI, Chebotareva NA, Golub NV, Asryants RA, Muronetz VI, Saso L, Yudin IK, Muranov KO, Ostrovsky MA, Kurganov BI (2007) Effect of alpha-crystallin on thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biophys Chem 125:521–531. doi:10.1016/j.bpc.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  • Kornilaev BA, Kurganov BI, Eronina TB, Chebotareva NA, Livanova NB, Orlov VN, Chernyak VYA (1997) Mechanism of heat denaturation of muscle phosphorylase b. Mol Biol 31:82–89

    CAS  Google Scholar 

  • Kudou D, Misaki S, Yamashita M, Tamura T, Takakura T, Yoshioka T, Yagi S, Hoffman RM, Takimoto A, Esaki N, Inagaki K (2007) Structure of the antitumour enzyme L-methionine gamma-lyase from Pseudomonas putida at 1.8 Å resolution. J Biochem 141:535–544. doi:10.1093/jb/mvm055

    Article  CAS  PubMed  Google Scholar 

  • Kurganov BI (1966) Kinetic study of dissociation and denaturation of enzymes in dilute solutions. Dissertation, Lomonosov Moscow State University (in Russian)

  • Kurganov BI (1967) Kinetic behavior of oligomeric enzymes. Chem Technol Polym 11:140–163 (in Russian)

    Google Scholar 

  • Kurganov BI (2012) Fundamental aspects of conformational lability of proteins. Biochem Anal Biochem 1:e107. doi:10.4172/2161-1009.1000e107

    Article  CAS  Google Scholar 

  • Kurganov BI (2013a) How to quantify the chaperone-like (anti-aggregation) activity? Biochem Anal Biochem 4:e136. doi:10.4172/2161-1009.1000e136

    Google Scholar 

  • Kurganov BI (2013b) Antiaggregation activity of chaperones and its quantification. Biochem (Mosc) 78:1554–1566. doi:10.1134/S0006297913130129

    Article  CAS  Google Scholar 

  • Kurganov BI (2015) Selection of test systems for estimation of anti-aggregation activity of molecular chaperones. Biochem Anal Biochem 4:e155. doi:10.4172/2161-1009.1000e155

    Article  Google Scholar 

  • Kurganov BI (2016) Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2016.07.066

    Google Scholar 

  • Kurganov BI, Agatova AI (1965) Heat denaturation of lactate dehydrogenase (L-lactate: NAD-oxidoreductase, EC 1.1.1.27) and D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD-oxidoreductase, EC 1.2.1.12) from rabbit muscle. Biofizika 10:755–762

    CAS  PubMed  Google Scholar 

  • Kurganov BI, Chebotareva NA (2013) The functioning of chaperones possessing the anti-aggregation activity in a crowded medium. Biochem Anal Biochem 2(2):e138. doi:10.4172/2161-1009.1000e138

    Article  Google Scholar 

  • Kurganov BI, Lyubarev AE (1988a) Enzyme and multienzyme complexes as controllable systems. Sov Sci Rev D 8:111–147

    Google Scholar 

  • Kurganov BI, Lyubarev AE (1988b) Hypothetical structure of the glycolytic enzyme complex (glycolytic metabolon) formed on erythrocyte membranes. Mol Biol 22:1605–1613

    CAS  Google Scholar 

  • Kurganov BI, Sugrobova NP, Mil’man LS (1985) Supramolecular organization of glycolytic enzymes. J Theor Biol 116:509–526. doi:10.1016/S0022-5193(85)80086-2

    Article  CAS  PubMed  Google Scholar 

  • Kurganov BI, Kornilaev BA, Chebotareva NA, Malikov VP, Orlov VN, Lyubarev AE, Livanova NB (2000) Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b. Biochem US 39:13144–13152. doi:10.1021/bi000975w

    Article  CAS  Google Scholar 

  • Kuznetsova IM, Turoverov KK, Uversky VN (2014) What macromolecular crowding can do to a protein. Int J Mol Sci 15:23090–23140. doi:10.3390/ijms151223090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Bon C, Nicolai T, Durand D (1999) Kinetics of aggregation and gelation of globular proteins after heat-induced denaturation. Int J Biol Macromol 32:6120–6127. doi:10.1021/ma9905775

    Google Scholar 

  • Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA (2006) 3D complex: a structural classification of protein complexes. PLoS Comput Biol 2:e155. doi:10.1371/journal.pcbi.0020155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyubarev AE, Kurganov BI (1989) Supramolecular organization of tricarboxylic acid cycle enzymes. Biosystems 22:91–102

    Article  CAS  PubMed  Google Scholar 

  • Lyubarev AE, Kurganov BI (1996) Problems of cell metabolism integration. In: Kurganov BI, Lyubarev AE (eds) Organization of biochemical systems. Structural and regulatory aspects. Nova, New York, pp 1–81

    Google Scholar 

  • Lyubarev AE, Kurganov BI (2000) Study of irreversible thermal denaturation of proteins by differential scanning calorimetry. Usp Biol Khim 40:43–84 (in Russian)

    CAS  Google Scholar 

  • Markossian KA, Kurganov BI (2004) Protein folding, misfolding and aggregation. Formation of inclusion bodies and aggresomes. Biochem (Mosc) 69:971–984. doi:10.1023/B:BIRY.0000043539.07961.4c

    Article  CAS  Google Scholar 

  • Markossian KA, Khanova HA, Kleimenov SY, Levitsky DI, Chebotareva NA, Asryants RA, Muronetz VI, Saso L, Yudin IK, Kurganov BI (2006) Mechanism of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochem US 45:13375–13384. doi:10.1021/bi0610707

    Article  CAS  Google Scholar 

  • Meremyanin AV, Eronina TB, Chebotareva NA, Kurganov BI (2008) Kinetics of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle: mechanism of protective action of α-crystallin. Biopolymers 89:124–134. doi:10.1002/bip.20872

    Article  CAS  PubMed  Google Scholar 

  • Mikhailova VV, Kurganov BI, Pivovarova AV, Levitsky DI (2006) Dissociative mechanism of F-actin thermal denaturation. Biochem (Mosc) 71:1261–1269. doi:10.1134/S0006297906110125

    Article  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confintment on biochemical reactions in physiological media. J Biol Chem 276:10577–10580. doi:10.1074/jbc.R100005200

    Article  CAS  PubMed  Google Scholar 

  • Moosavi-Movahedi F, Saboury AA, Alijanvand HH, Bohlooli M, Salami M, Moosavi-Movahedi AA (2013) Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: structural mechanism. Int J Biol Macromol 58:66–72. doi:10.1016/j.ijbiomac.2013.03.038

    Article  CAS  PubMed  Google Scholar 

  • Moosavi-Nejad SZ, Moosavi-Movahedi AA, Rezaei-Tavirani M, Floris G, Medda R (2003) Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase. J Biochem Mol Biol 36:167–172

    PubMed  Google Scholar 

  • Murphy RM, Tsai AM (2006) Misbehaving proteins. Protein (Mis)Folding, aggregation, and stability. Springer, New York

    Book  Google Scholar 

  • Nichol LW, Jackson WJ, Winzor DJ (1967) A theoretical study of the binding of small molecules to a polymerizing protein system. A model for allosteric effects. Biochem US 6:2449–2456. doi:10.1021/bi00860a022

    Article  CAS  Google Scholar 

  • Nikolaidis A, Moschakis T (2017) Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis. Food Chem 215:235–244. doi:10.1016/j.foodchem.2016.07.133

    Article  CAS  PubMed  Google Scholar 

  • Papp E, Csermely P (2006) Chemical chaperones: mechanisms of action and potential use. Handb Exp Pharmacol 172:405–416. doi:10.1007/3-540-29717-0_16

    Article  CAS  Google Scholar 

  • Parra AQ, Chukhrai ES (2010) Kinetic analysis of the thermal inactivation process in aminoacylase I. Rev Fac Cien Básicas 8:1–25 (in Spanish)

    Google Scholar 

  • Poltorak OM, Chukhrai ES (1986) Dissociative inactivation of biocatalysts. Itogi Nauk Tekh 5:50–86 (in Russian)

    Google Scholar 

  • Poltorak OM, Chukhrai ES, Torshin IY (1998) Dissociative thermal inactivation, stability, and activity of oligomeric enzymes. Biochem (Mosc) 63:303–311

    CAS  Google Scholar 

  • Privalov PL (2012) Microcalorimetry of macromolecules: The physical basis of biological structures. Wiley, Hoboken

    Book  Google Scholar 

  • Ramirez-Alvarado M, Kelly JW, Dobson CM (eds) (2010) Protein misfolding diseases: current and emerging principles and therapies. Wiley, Hoboken

    Google Scholar 

  • Roefs SP, De Kruif KG (1994) A model for the denaturation and aggregation of β-lactoglobulin. Eur J Biochem 226:883–889. doi:10.1111/j.1432-1033.1994.00883.x

    Article  CAS  PubMed  Google Scholar 

  • Roman SG, Chebotareva NA, Eronina TB, Kleymenov SY, Makeeva VF, Muranov KO, Poliansky NB, Kurganov BI (2011) Does crowded cell-like environment reduce the chaperone-like activity of alpha-crystallin? Biochem US 50:10607–10623. doi:10.1021/bi201030y

    Article  CAS  Google Scholar 

  • Roman SG, Chebotareva NA, Kurganov BI (2016) Anti-aggregation activity of small heat shock proteins under crowded conditions. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2016.05.080

    PubMed  Google Scholar 

  • Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61:921–935. doi:10.1016/S0006-3495(92)81899-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ruiz JM (2010) Protein kinetic stability. Biophys Chem 148:1–15. doi:10.1016/j.bpc.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Santiago PS, Carvalho JW, Domingues MM, Santos NC, Tabak M (2010) Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies. Biophys Chem 152:128–138. doi:10.1016/j.bpc.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  • Schnell R, Oehlmann W, Sandalova T, Braun Y, Huck C, Maringer M, Singh M, Schneider G (2012) Tetrahydrodipicolinate N-succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion. PLoS ONE 7:e31133. doi:10.1371/journal.pone.0031133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz FP, Puri KD, Bhat RG, Surolia A (1993) Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem 268:7668–7677

    CAS  PubMed  Google Scholar 

  • Sluchanko NN, Chebotareva NA, Gusev NB (2015) Quaternary structure of human small heat shock protein HSPB6 (Hsp20) in crowded media modeled by trimethylamine N-oxide (TMAO): effect of protein phosphorylation. Biochimie 108:68–75. doi:10.1016/j.biochi.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  • Srinivas VR, Singha NC, Schwarz FP, Surolia A (1998) Differential scanning calorimetric studies of the glycoprotein, winged bean acidic lectin, isolated from the seeds of Psophocarpus tetrogonolobus. FEBS Lett 425:57–60. doi:10.1016/S0014-5793(98)00197-5

    Article  CAS  PubMed  Google Scholar 

  • Steif C, Weber P, Hinz HJ, Flossdorf J, Cesareni G, Kokkinidis M (1993) Subunit interactions provide a significant contribution to the stability of the dimeric four-alpha-helical-bundle protein ROP. Biochem US 32:3867–3876. doi:10.1021/bi00066a005

    Article  CAS  Google Scholar 

  • Surolia A, Sharon N, Schwarz FP (1996) Thermodynamics of monosaccharide and disaccharide binding to Erythrina corallodendron lectin. J Biol Chem 271:17697–17703. doi:10.1074/jbc.271.30.17697

    Article  CAS  PubMed  Google Scholar 

  • Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282. doi:10.1016/S0065-3233(08)60401-5

    Article  CAS  PubMed  Google Scholar 

  • Tanguay RM, Hightower LE (eds) (2015) The big book on small heat shock proteins. Springer, Basel

    Google Scholar 

  • Tarus B, Straub JE, Thirumalai D (2005) Probing the initial stage of aggregation of the Abeta(10–35)-protein: assessing the propensity for peptide dimerization. J Mol Biol 345:1141–1156

    Article  CAS  PubMed  Google Scholar 

  • Tellez LA, Blancas-Mejia LM, Carrillo-Nava E, Mendoza-Hernández G, Cisneros DA, Fernández-Velasco DA (2008) Thermal unfolding of triosephosphate isomerase from Entamoeba histolytica: dimer dissociation leads to extensive unfolding. Biochem US 47:11665–11673. doi:10.1021/bi801360k

    Article  CAS  Google Scholar 

  • Uversky VN, Fink AL (2006) Protein misfolding, aggregation and conformational diseases. Part A: protein aggregation and conformational diseases. Springer, New York

    Book  Google Scholar 

  • Uversky VN, Fink AL (2007) Protein misfolding, aggregation and conformational diseases. Part B: molecular mechanisms of conformational diseases. Springer, New York

    Book  Google Scholar 

  • van Boekel MAJS (2009) Kinetic modeling of reactions in foods. CRC, Boca Raton, pp 4-16–4-28

    Google Scholar 

  • Wills P, Winzor DJ (2011) Allowance for thermodynamic nonideality in the characterization of protein interactions by spectral techniques. Biophys Chem 158:21–25. doi:10.1016/j.bpc.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Zaitzeva EA, Chukrai ES, Poltorak OM (1996) Thermostability of yeast hexokinase and yeast glucose-6-phosphate dehydrogenase. Appl Biochem Biotechnol 61:67–74. doi:10.1007/BF02785689

    Article  CAS  PubMed  Google Scholar 

  • Zaitzeva EA, Chukhrai ES, Poltorak OM (2000) Stabilization mechanism of glucose-6-phosphate dehydrogenase. Vestn Mosk U Khim 41:127–129

    Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397. doi:10.1146/annurev.biophys.37.032807.125817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very glad to congratulate Prof. Donald Winzor warmly on his 80th birthday. We wish him good health, many happy years of scientific activity and friendship of his many friends the world over. We appreciate greatly all that he has done to advance our understanding on the way macromolecules behave in the non-ideal environment. Since our review is devoted to the behavior of dissociating enzymes, it is relevant to remember that Prof. Donald Winzor and his colleagues were among those who started to elaborate the theory of allosteric regulation based on the displacement of the equilibrium between oligomeric enzyme forms under the influence of allosteric effectors (Frieden 1967; Kurganov 1967; Nichol et al. 1967). Further investigations of Prof. Donald Winzor concerning the role of the protein isomerization induced by the binding of specific ligands or the presence of small inert cosolutes in fulfillment of the biological functions of proteins were of great interest to us, and we were glad to carry out the joint study of the effects of crowding on the allosteric properties of glycogen phosphorylase b (Chebotareva et al. 2001, 2005). It was a very exciting experience for me (N.A.C.) to talk to Prof. Donald Winzor and to discuss out experimental results.

This study was supported by the Russian Science Foundation (grant 16-14-10055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Chebotareva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Analytical Quantitative Relations in Biochemistry’ edited by Damien Hall and Stephen Harding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotareva, N.A., Roman, S.G. & Kurganov, B.I. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins. Biophys Rev 8, 397–407 (2016). https://doi.org/10.1007/s12551-016-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-016-0220-z

Keywords

Navigation