Skip to main content
Log in

The pivotal role of the β7 strand in the intersubunit contacts of different human small heat shock proteins

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Human αB-crystallin and small heat shock proteins HspB6 and HspB8 were mutated so that all endogenous Cys residues were replaced by Ser and the single Cys residue was inserted in a position homologous to that of Cys137 of human HspB1, i.e. in a position presumably located in the central part of β7 strand of the α-crystallin domain. The secondary, tertiary, and quaternary structures of thus obtained Cys-mutants as well as their chaperone-like activity were similar to those of their wild-type counterparts. Mild oxidation of Cys-mutants leads to formation of disulfide bond crosslinking neighboring monomers thus indicating participation of the β7 strand in intersubunit interaction. Oxidation weakly affects the secondary and tertiary structure, does not affect the quaternary structure of αB-crystallin and HspB6, and shifts equilibrium between monomer and dimer of HspB8 towards dimer formation. It is concluded that the β7 strand participates in the intersubunit interaction of four human small heat shock proteins (αB-crystallin, HspB1, HspB6, HspB8) having different structure of β2 strand of α-crystallin domain and different length and composition of variable N- and C-terminal tails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cys-mutant of αB-crystallin:

Human αB-crystallin with point mutation E117C

Сys-mutant of HspB6:

Human HspB6 with double mutation C46S/E116C

Cys-mutant of HspB8:

Human HspB8 with fourfold mutation C10S/C99S/C195S/N138C

bis-ANS:

4,4′-Bis(1-anilinonaphthalene-8-sulfonate)

DTT:

Dithiothreitol

ME:

β-Mercaptoethanol

PMSF:

Phenylmethanesulfonyl fluoride

sHsp:

Small heat shock proteins

References

  • Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P (2007) Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581:3665–3674

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by uploading glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–424

    Article  CAS  PubMed  Google Scholar 

  • Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structure of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    Article  CAS  PubMed  Google Scholar 

  • Benndorf R, Welsh MJ (2004) Shocking degeneration. Nat Genet 36:547–548

    Article  CAS  PubMed  Google Scholar 

  • Berengian AR, Bova MP, Mchaourab HS (1997) Structure and function of the conserved domain in αA-crystallin. Site-directed spin labeling identifies a β-strand located near a subunit interface. Biochemistry 36:9951–9957

    Article  CAS  PubMed  Google Scholar 

  • Berengian AR, Parfenova M, Mchaourab HS (1999) Site-directed spin labeling study of subunit interactions in the α-crystallin domain of small heat-shock proteins. J Biol Chem 274:6305–6314

    Article  CAS  PubMed  Google Scholar 

  • Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results is an irregular structure and defective chaperone-like function. Proc Natl Acad Sci USA 96:6137–6142

    Article  CAS  PubMed  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin A, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  • Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB (2003) Some properties of human small heat shock protein Hsp20 (HspB6). Eur J Biochem 271:291–302

    Article  Google Scholar 

  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7:436–445

    Article  CAS  PubMed  Google Scholar 

  • Eaton P, Fuller W, Shattock MJ (2002) S-Thiolation of Hsp27 regulates its multimeric aggregate size independently of phosphorylation. J Biol Chem 277:21189–21196

    Article  CAS  PubMed  Google Scholar 

  • Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66:62–81

    Article  CAS  PubMed  Google Scholar 

  • Feil IK, Malfois M, Hendle J, van der Zandt H, Svergun DI (2001) A novel quanternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 276:12024–12029

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JG, Clark JI (2005) Insight into the domain required for dimerization and assembly of human αB crystallin. Protein Sci 14:684–695

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JG, Shenoy AK, Clark JI (2007) Interactions between important regulatory proteins and human αB crystallin. Biochemistry 46:6308–6317

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Bova MP, Huang Q-L, Mchaoraub HS, Stewart PL (2000) Small heat-shock proteins structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298:261–272

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat shock proteins. Nat Struct Biol 12:842–846

    Article  CAS  Google Scholar 

  • Jehle S, van Rossum B, Stout JR, Noguchi SR, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) αB-crystallin: a hybrid solid-solution state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497

    Article  CAS  PubMed  Google Scholar 

  • Kasakov AS, Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB (2007) Effect of mutations in the β5-β7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, H11). FEBS J 274:5628–5642

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of small heat-shock protein. Nature 394:595–599

    Article  CAS  PubMed  Google Scholar 

  • Kim MV, Kasakov AS, Seit-Nebi AS, Marston SB, Gusev NB (2006) Structure and properties of K141E mutant of small heat shock protein Hsp22 (HspB8, H11) that is expressed in human neuromuscular disorders. Arch Biochem Biophys 454:32–41

    Article  CAS  PubMed  Google Scholar 

  • Kim MV, Seit-Nebi AS, Marston SB, Gusev NB (2004) Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 315:796–801

    Article  CAS  PubMed  Google Scholar 

  • Kumar LVS, Ramakrishna T, Rao CM (1999) Structural and functional consequences of the mutation of conserved arginine residue in αA and αB-crystallins. J Biol Chem 274:24137–24141

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Mchaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    Article  CAS  PubMed  Google Scholar 

  • Michiel M, Skouri-Panet F, Duprat E, Simon S, Ferard C, Tardieu A, Finet S (2009) Abnormal assemblies and subunit exchange of αB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure. Biochemistry 48:442–453

    Article  CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  CAS  PubMed  Google Scholar 

  • Murugesan R, Santhoshkumar P, Sharma KK (2008) Role of αBI5 and αBT162 residues in subunit interaction during oligomerization of αB-crystallin. Mol Vis 14:1835–1844

    PubMed  Google Scholar 

  • Permyakov EA (1993) Luminescent spectroscopy of proteins. CRC, Boca Raton

    Google Scholar 

  • Perng MD, Muchowski PJ, van den Ijssel P, Wu GJS, Hutcheson AM, Clark JI, Quinlan RA (1999) The cardiomyopathy and lens cataract mutation in αB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments. J Biol Chem 274:33235–33243

    Article  CAS  PubMed  Google Scholar 

  • Sarkar G, Sommer SS (1990) The megaprimer method of site-directed mutagenesis. Biotechniques 8:404–407

    CAS  PubMed  Google Scholar 

  • Simon S, Michiel M, Skouri-Panet F, Lechaire JP, Vicart P, Tardieu A (2007) Residue R120 is essential for the quaternary structure and functional integrity of human αB-crystallin. Biochemistry 46:9605–9614

    Article  CAS  PubMed  Google Scholar 

  • Sreelakshmi Y, Santhoshkumar P, Bhattacharyya J, Sharma KK (2004) αA-Crystallin interacting regions in the small heat shock protein, αB-crystallin. Biochemistry 43:15785–15795

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the α-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 27:2613–2627

    Article  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38:433–444

    Article  CAS  PubMed  Google Scholar 

  • van Monfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  Google Scholar 

  • Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    Article  CAS  PubMed  Google Scholar 

  • Walker JM (2002) Gradient SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana, Totowa, pp 69–72

    Google Scholar 

  • Zavialov AV, Benndorf R, Ehrnsperger M, Zav’jalov V, Dudich I, Buchner J, Gaestel M (1998a) The effect of the intersubunit disulfide bond on the structure and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22:163–173

    Article  CAS  PubMed  Google Scholar 

  • Zavialov AV, Gaestel M, Korpela T, Zav’yalov VP (1998b) Thiol-disulfide exchange between small heat shock protein 25 and glutathione. Biochim Biophys Acta 1388:123–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This investigation was supported by the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai B. Gusev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 21 kb)

Online Resource 2

(PDF 145 kb)

Online Resource 3

(PDF 33 kb)

Online Resource 4

(PDF 184 kb)

Online Resource 5

(PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mymrikov, E.V., Bukach, O.V., Seit-Nebi, A.S. et al. The pivotal role of the β7 strand in the intersubunit contacts of different human small heat shock proteins. Cell Stress and Chaperones 15, 365–377 (2010). https://doi.org/10.1007/s12192-009-0151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0151-8

Keywords

Navigation