Skip to main content
Log in

Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors – 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

BCL2A1:

BCL2 related protein A1

cyclin D1:

type D1 cyclin-dependent kinases activator

DAPK1:

death-associated protein kinase 1

FAS:

Fas cell surface death receptor

HRK:

hara-kiri

Ki67:

marker of proliferation

mPRs:

membrane progesterone receptors

nPRs:

nuclear progesterone receptors

P4:

progesterone

p21:

cyclin-dependent kinase inhibitor 1A

p27:

a cyclin-dependent kinase inhibitor 1B

PCNA:

proliferating cell nuclear antigen

qPCR:

quantitative real-time PCR

References

  1. Zhu, Y., Bond, J., and Thomas, P. (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor, Proc. Natl. Acad. Sci. USA, 100, 2237-2242, https://doi.org/10.1073/pnas.0436133100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pang, Y., Dong, J., and Thomas, P. (2013) Characterization, neurosteroid binding and brain distribution of human membrane progesterone receptors δ and ε (mPRδ and mPRε) and mPRdelta involvement in neurosteroid inhibition of apoptosis, Endocrinology, 154, 283-295, https://doi.org/10.1210/en.2012-1772.

    Article  CAS  PubMed  Google Scholar 

  3. Shchelkunova, T. A., and Morozov, I. A. (2015) Molecular basis and tissue specificity of the progestin effect, Mol. Biol., 49, 649-667, https://doi.org/10.1134/S0026893315050155.

    Article  CAS  Google Scholar 

  4. Diep, C. H., Daniel, A. R., Mauro, L. J., Knutson, T. P., and Lange, C. A. (2015) Progesterone action in breast, uterine, and ovarian cancers, J. Mol. Endocrinol., 54, R31-53, https://doi.org/10.1530/jme-14-0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dressing, G. E., Alyea, R., Pang, Y., and Thomas, P. (2012) Membrane progesterone receptors (mPRs) mediate progestin induced antimorbidity in breast cancer cells and are expressed in human breast tumors, Horm. Cancer, 3, 101-112, https://doi.org/10.1007/s12672-012-0106-x.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, X., Sun, L., Wang, X., Su, P., Li, Z., et al. (2016) Breast cancer invasion and metastasis by mPRα through the PI3K/Akt signaling pathway, Pathol. Oncol. Res., 22, 471-476, https://doi.org/10.1007/s12253-015-0023-8.

    Article  CAS  PubMed  Google Scholar 

  7. Vares, G., Sai, S., Wang, B., Fujimori, A., Nenoi, M., and Nakajima, T. (2015) Progesterone generates cancer stem cells through membrane progesterone receptor-triggered signaling in basal-like human mammary cells, Cancer Lett., 362, 167-173, https://doi.org/10.1016/j.canlet.2015.03.030.

    Article  CAS  PubMed  Google Scholar 

  8. Zuo, L., Li, W., and You, S. (2010) Progesterone reverses the mesenchymal phenotypes of basal phenotype breast cancer cells via a membrane progesterone receptor mediated pathway, Breast Cancer Res., 12, R34, https://doi.org/10.1186/bcr2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, L., Zhou, W., Zhang, H., Hu, Y., Yu, L., et al. (2017) Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α, Int. J. Mol. Med., 40, 755-761, https://doi.org/10.3892/ijmm.2017.3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonzalez-Orozcoa, J. C., Hansberg-Pastorb, V., Valadez-Cosmesa, P., Nicolas-Ortegaa, W., Bastida-Beristaina, Y., et al. (2018) Activation of membrane progesterone receptor-alpha increases proliferation, migration, and invasion of human glioblastoma cells, Mol. Cell. Endocrinol., 477, 81-89, https://doi.org/10.1016/j.mce.2018.06.004.

    Article  CAS  Google Scholar 

  11. Charles, N. J., Thomas, P., and Lange, C. A. (2010) Expression of membrane progesterone receptors (mPR/PAQR) in ovarian cancer cells: implications for progesterone induced signaling events, Horm. Cancer, 1, 167-176, https://doi.org/10.1007/s12672-010-0023-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao, J., Chen, X., Lu, X., Xie, M., He, B., et al. (2020) Progesterone/Org inhibits lung adenocarcinoma cell growth via membrane progesterone receptor alpha, Thorac. Cancer, 11, 2209-2223, https://doi.org/10.1111/1759-7714.13528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goncharov, A. I., Maslakova, A. A., Polikarpova, A. V., Bulanova, E. A., Guseva, A. A., et al. (2017) Progesterone inhibits proliferation and modulates expression of proliferation-related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells, J. Steroid Biochem. Mol. Biol., 165, 293-304, https://doi.org/10.1016/j.jsbmb.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  14. Polikarpova, A. V., Maslakova, A. A., Levina, I. S., Kulikova, L. E., Kuznetsov, Y. V., et al. (2017) Selection of progesterone derivatives specific to membrane progesterone receptors, Biochemistry (Moscow), 82, 140-148, https://doi.org/10.1134/S0006297917020055.

    Article  CAS  Google Scholar 

  15. Levina, I. S., Kuznetsov, Y. V., Shchelkunova, T. A., and Zavarzin, I. V. (2021) Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo, J. Steroid Biochem. Mol. Biol., 207, 105827, https://doi.org/10.1016/j.jsbmb.2021.105827.

    Article  CAS  PubMed  Google Scholar 

  16. Polikarpova, A. V., Levina, I.S., Sigai, N. V., Zavarzin, I. V., Morozov, I. A., et al. (2019) Immunomodulatory effects of progesterone and selective ligands of membrane progesterone receptors, Steroids, 145, 5-18, https://doi.org/10.1016/j.steroids.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  17. Kasubuchi, M., Watanabe, K., Hirano, K., Inoue, D., Li, X., et al. (2017) Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling, Sci. Rep., 7, 5168, https://doi.org/10.1038/s41598-017-05423-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pang, Y., Dong, J., and Thomas, P. (2015) Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor α, Am J. Physiol. Endocrinol. Metab., 308, E899-911, https://doi.org/10.1152/ajpendo.00527.2014.

    Article  CAS  PubMed  Google Scholar 

  19. Pang, Y., and Thomas, P. (2018) Progesterone induces relaxation of human umbilical cord vascular smooth muscle cells through mPRa (PAQR7), Mol. Cell. Endocrinol., 474, 20-34, https://doi.org/10.1016/j.mce.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  20. Castelnovo, L. F., Caffino, L., Bonalume, V., Fumagalli, F., Thomas, P., and Magnaghi, V. (2020) Membrane progesterone receptors (mPRs/PAQRs) differently regulate migration, proliferation, and differentiation in rat schwann cells, J. Mol. Neurosci., 70, 433-448, https://doi.org/10.1007/s12031-019-01433-6.

    Article  CAS  PubMed  Google Scholar 

  21. Kong, X., Li, M., Shao, K., Yang, Y., Wang, Q., and Cai, M. (2020) Progesterone induces cell apoptosis via the CACNA2D3/Ca2+/p38 MAPK pathway in endometrial cancer, Oncol. Rep., 43, 121-132, https://doi.org/10.3892/or.2019.7396.

    Article  CAS  PubMed  Google Scholar 

  22. Godbole, M., Tiwary, K., Badwe, R., Gupta, S., and Dutt, A. (2017) Progesterone suppresses the invasion and migration of breast cancer cells irrespective of their progesterone receptor status, Cell Oncol. (Dordr), 40, 411-417, https://doi.org/10.1007/s13402-017-0330-z.

    Article  CAS  Google Scholar 

  23. Salazar, M., Lerma-Ortiz, A., Hooks, G. M., Ashley, A. K., and Ashley, R. L. (2016) Progestin-mediated activation of MAPK and AKT in nuclear progesterone receptor negative breast epithelial cells: The role of membrane progesterone receptors, Gene, 591, 6-13, https://doi.org/10.1016/j.gene.2016.06.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karteris, E., Zervou, S., Pang, Y., Dong, J., Hillhouse, E. W., et al. (2006) Progesterone signaling in human myometrium through two novel membrane G protein coupled receptors: potential role in functional progesterone withdrawal at term, Mol. Endocrinol., 20, 1519-1534, https://doi.org/10.1210/me.2005-0243.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, J., Reese, J., Zhou, Y., and Hirsch, E. (2015) Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells, J. Endocrinol., 224, 183-194, https://doi.org/10.1530/JOE-14-0470.

    Article  CAS  PubMed  Google Scholar 

  26. Camilletti, M. A., Ferraris, J., Abeledo-Machado, A., Converse, A., Faraoni, E. Y., et al. (2018) Participation of membrane progesterone receptor α in the inhibitory effect of progesterone on prolactin secretion, J. Neuroendocrinol., 30, e12614, https://doi.org/10.1111/jne.12614.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, P., Pang, Y., Dong, J., Groenen, P., Kelder, J., et al. (2007) Steroid and g protein binding characteristics of the seatrout and human progestin membrane receptor subtypes α and their evolutionary origins, Endocrinology, 148, 705-718, https://doi.org/10.1210/en.2006-0974.

    Article  CAS  PubMed  Google Scholar 

  28. Tokumoto, T., Hossain, M. B., and Wang, J. (2016) Establishment of procedures for studying mPR-interacting agents and physiological roles of mPR, Steroids, 111, 79-83, https://doi.org/10.1016/j.steroids.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  29. Tang, Y. T., Hu, T., Arterburn, M., Boyle, B., Bright, J. M., et al. (2005) PAQR Proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif, J. Mol. Evol., 61, 372-380, https://doi.org/10.1007/s00239-004-0375-2.

    Article  CAS  PubMed  Google Scholar 

  30. Nader, N., Dib, M., Hodeify, R., Courjaret, R., Elmi, A., et al. (2020) Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2, PLoS Biol., 19, e3001117, https://doi.org/10.1371/journal.pbio.3000901.

    Article  CAS  Google Scholar 

  31. Fernandes, M. S., Brosens, J. J., and Gellersen, B. (2008) Honey, we need to talk about the membrane progestin receptors, Steroids, 73, 942-52, https://doi.org/10.1016/j.steroids.2007.12.004.

    Article  CAS  PubMed  Google Scholar 

  32. Atif, F., Yousuf, S., and Stein, D. G. (2015) Anti-tumor effects of progesterone in human glioblastoma multiforme: role of PI3K/Akt/mTOR signaling, J. Steroid Biochem. Mol. Biol., 146, 62-73, https://doi.org/10.1016/j.jsbmb.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  33. Atif, F., Sayeed, I., Yousuf, S., Ishrat, T., Hua, F., et al. (2011) Progesterone inhibits the growth of human neuroblastoma: in vitro and in vivo evidence, Mol. Med., 17, 1084-1094, https://doi.org/10.2119/molmed.2010.00255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shchelkunova, T. A., Albert, E. A., Morozov, I. A., Rubtsov, P. M., Samokhodskaya, L. M., et al. (2011) Contents of mRNAs encoding endosome/lysosome components in normal human aorta and in stage II of atherogenesis: a hidden regulation, Biochemistry (Moscow), 76, 1178-1184, https://doi.org/10.1134/S0006297911100129.

    Article  CAS  Google Scholar 

  35. Sui, X., Kong, N., Ye, L., Han, W., Zhou, J., et al. (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents, Cancer Lett., 344, 174-179, https://doi.org/10.1016/j.canlet.2013.11.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Center of Collective Use “Genome” of the Engelhard Institute of Molecular Biology (Russian Academy of Sciences) and to I. Yu. Petrushanko for helping with the flow cytometry experiments.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-015-00092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana A. Shchelkunova.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A.I., Levina, I.S., Shliapina, V.L. et al. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. Biochemistry Moscow 86, 1446–1460 (2021). https://doi.org/10.1134/S0006297921110080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110080

Keywords

Navigation