Skip to main content
Log in

Divergent Impact of Actin Isoforms on Division of Epithelial Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We investigated distribution and functions of beta- and gamma-cytoplasmic actins (CYAs) at different stages of non-neoplastic epithelial cell division using laser scanning microscopy (LSM). Here, we demonstrated that beta- and gamma-CYAs are spatially segregated in the early prophase, anaphase, telophase, and cytokinesis. Small interfering RNA (siRNA) experiments revealed that in both beta-CYA- and gamma-CYA-depleted cells, the number of cells was significantly reduced compared with the siRNA controls. Beta-CYA depletion resulted in an enlargement of the cell area in metaphase and high percentage of polynuclear cells compared with the siRNA control, indicating a potential failure of cytokinesis. Gamma-CYA depletion resulted in a reduced percentage of mitotic cells. We also observed the interdependence between the actin isoforms and the microtubule system in mitosis: (i) a decrease in the gamma-CYA led to impaired mitotic spindle organization; (ii) suppression of tubulin polymerization caused impaired beta-CYA reorganization, as incubation with colcemid blocked the transfer of short beta-actin polymers from the basal to the cortical compartment. We conclude that both actin isoforms are essential for proper cell division, but each isoform has its own specific functional role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

CYA:

cytoplasmic actin

LSM:

laser scanning microscopy

siRNA:

small interfering RNA

References

  1. Ampe, C., and Van Troys, M. (2017) Mammalian actins: isoform-specific functions and diseases, Handb. Exp. Pharmacol., 235, 1-37, doi: https://doi.org/10.1007/164_2016_43 .

    Article  CAS  PubMed  Google Scholar 

  2. Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., Chaponnier, C., Clément, S., and Chaponnier, C. (2009) Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity, J. Cell Sci., 122, 2980-2988, doi: https://doi.org/10.1242/jcs.041970 .

    Article  CAS  PubMed  Google Scholar 

  3. Dugina, V., Alieva, I., Khromova, N., Kireev, I., Gunning, P. W., and Kopnin, P. (2016) Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells, Oncotarget, 7, 72699-72715, doi: https://doi.org/10.18632/oncotarget.12236 .

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dogterom, M., and Koenderink, G. H. (2019) Actin–microtubule crosstalk in cell biology, Nat. Rev. Mol. Cell Biol., 20, 38-54, doi: https://doi.org/10.1038/s41580-018-0067-1 .

    Article  CAS  PubMed  Google Scholar 

  5. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line, J. Cell Biol., 106, 761-771, doi: https://doi.org/10.1083/jcb.106.3.761 .

    Article  CAS  PubMed  Google Scholar 

  6. Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., and Sellers, J. R. (2004) Mechanism of blebbistatin inhibition of myosin II, J. Biol. Chem., 279, 35557-35563, doi: https://doi.org/10.1074/jbc.M405319200 .

    Article  CAS  PubMed  Google Scholar 

  7. Alberts, B, Johnson, A, Lewis, J., Raff, M., Roberts, K., and Walter, P. (2008) Cytokinesis, in Molecular Biology of the Cell, 5th Edn., Garland Science, New York, pp. 1092-1093.

  8. Straight, A. F., Cheung, A., Limouze, J., Chen, I., Westwood, N. J., Sellers, J. R., and Mitchison, T. J. (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor, Science, 299, 1743-1747, doi: https://doi.org/10.1126/science.1081412 .

    Article  CAS  PubMed  Google Scholar 

  9. Etienne-Manneville, S., and Hall, A. (2002) Rho GTPases in cell biology, Nature, 420, 629-635, doi: https://doi.org/10.1038/nature01148 .

    Article  CAS  PubMed  Google Scholar 

  10. Bement, W. M., Miller, A. L., and Von Dassow, G. (2006) Rho GTPase activity zones and transient contractile arrays, BioEssays, 28, 983-993, doi: https://doi.org/10.1002/bies.20477 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao, H., Verdier-Pinard, P., Fernandez-Fuentes, N., Burd, B., Angeletti, R., Fiser, A., Horwitz, S. B., and Orr, G. A. (2006) Insights into the mechanism of microtubule stabilization by taxol, Proc. Natl. Acad. Sci. USA, 103, 10166-10173, doi: https://doi.org/10.1073/pnas.0603704103 .

    Article  CAS  PubMed  Google Scholar 

  12. Borisy, G. G., and Taylor, E. W. (1967) The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus, J. Cell Biol., 34, 535-548, doi: https://doi.org/10.1083/jcb.34.2.535 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borisy, G. G., and Taylor, E. W. (1967) The mechanism action of colchicine. Binding of colchincine-3H to cellular protein, J. Cell Biol., 34, 525-533, doi: https://doi.org/10.1083/jcb.34.2.525 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brockmann, C., Huarte, J., Dugina, V., Challet, L., Rey, E., Conne, B., Swetloff, A., Nef, S., Chaponnier, C., and Vassalli, J.-D. (2011) Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes, Biol. Reprod., 85, 1025-1039, doi: https://doi.org/10.1095/biolreprod.111.091736 .

    Article  CAS  PubMed  Google Scholar 

  15. Po’uha, S. T., and Kavallaris, M. (2015) Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells, Cell Cycle, 14, 3908-3919, doi: https://doi.org/10.1080/15384101.2015.1120920 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, A., Arora, P. D., McCulloch, C. A., and Wilde, A. (2017) Cytokinesis requires localized β-actin filament production by an actin isoform specific nucleator, Nat. Commun., 8, 1530, doi: https://doi.org/10.1038/s41467-017-01231-x .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandquist, J. C., Kita, A. M., and Bement, W. M. (2011) And the dead shall rise: actin and myosin return to the spindle, Dev. Cell, 21, 410-419, doi: https://doi.org/10.1016/j.devcel.2011.07.018 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uzbekov, R., Kireyev, I., and Prigent, C. (2002) Centrosome separation: respective role of microtubules and actin filaments, Biol. Cell, 94, 275-288, doi: https://doi.org/10.1016/s0248-4900(02)01202-9 .

    Article  CAS  PubMed  Google Scholar 

  19. Lancaster, O., LeBerre, M., Dimitracopoulos, A., Bonazzi, D., Zlotek-Zlotkiewicz, E., Picone, R., Duke, T., Piel, M., and Baum, B. (2013) Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation, Dev. Cell, 25, 270-283, doi: https://doi.org/10.1016/j.devcel.2013.03.014 .

    Article  CAS  PubMed  Google Scholar 

  20. Rosenblatt, J., Cramer, L. P., Baum, B., and McGee, K. M. (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly, Cell, 117, 361-372, doi: https://doi.org/10.1016/S0092-8674(04)00341-1 .

    Article  CAS  PubMed  Google Scholar 

  21. Mogessie, B., and Schuh, M. (2017) Actin protects mammalian eggs against chromosome segregation errors, Science, 357, eaal1647, doi: https://doi.org/10.1126/science.aal1647 .

    Article  CAS  PubMed  Google Scholar 

  22. Jordan, S. N., and Canman, J. C. (2012) Rho GTPases in animal cell cytokinesis: an occupation by the one percent, Cytoskeleton (Hoboken), 69, 919-930, doi: https://doi.org/10.1002/cm.21071 .

    Article  CAS  Google Scholar 

  23. Chen, X., Wang, K., Svitkina, T., and Bi, E. (2020) Critical roles of a RhoGEF-anillin module in septin architectural remodeling during cytokinesis, Curr. Biol., 30, 1477-1490.e3, doi: https://doi.org/10.1016/j.cub.2020.02.023 .

    Article  CAS  PubMed  Google Scholar 

  24. Svitkina, T. (2018) The actin cytoskeleton and actin-based motility, Cold Spring Harb. Perspect. Biol., 10, a018267, doi: https://doi.org/10.1101/cshperspect.a018267 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piekny, A. J., and Glotzer, M. (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis, Curr. Biol., 18, 30-36, doi: https://doi.org/10.1016/j.cub.2007.11.068 .

    Article  CAS  PubMed  Google Scholar 

  26. Ridley, A. J., and Hall, A. (1992) The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, 70, 389-399, doi: https://doi.org/10.1016/0092-8674(92)90163-7 .

    Article  CAS  PubMed  Google Scholar 

  27. Wagner, E., and Glotzer, M. (2016) Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage, J. Cell Biol., 213, 641-649, doi: https://doi.org/10.1083/jcb.201603025 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takaishi, K., Sasaki, T., Kameyama, T., Tsukita, S., Tsukita, S., and Takai, Y. (1995) Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell–cell adhesion sites and cleavage furrows, Oncogene, 11, 39-48.

    CAS  PubMed  Google Scholar 

  29. Kosako, H., Yoshida, T., Matsumura, F., Ishizaki, T., Narumiya, S., and Inagaki, M. (2000) Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow, Oncogene, 19, 6059-6064, doi: https://doi.org/10.1038/sj.onc.1203987 .

    Article  CAS  PubMed  Google Scholar 

  30. Hall, A., and Nobes, C. D. (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton, Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 965-970, doi: https://doi.org/10.1098/rstb.2000.0632 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halet, G., and Carroll, J. (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes, Dev. Cell, 12, 309-317, doi: https://doi.org/10.1016/j.devcel.2006.12.010 .

    Article  CAS  PubMed  Google Scholar 

  32. Dugina, V., Khromova, N., Rybko, V., Blizniukov, O., Shagieva, G., Chaponnier, C., Kopnin, B., and Kopnin, P. (2015) Tumor promotion by γ and suppression by β non-muscle actin isoforms, Oncotarget, 6, 14556-14571, doi: https://doi.org/10.18632/oncotarget.3989 .

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dugina, V., Shagieva, G., Khromova, N., and Kopnin, P. (2018) Divergent impact of actin isoforms on cell cycle regulation, Cell Cycle, 17, 2610-2621, doi: https://doi.org/10.1080/15384101.2018.1553337 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 18-29-09082, 18-34-00047) and by the Lomonosov Moscow State University development program (PNR 5.13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Alieva.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagieva, G.S., Alieva, I.B., Chaponnier, C. et al. Divergent Impact of Actin Isoforms on Division of Epithelial Cells. Biochemistry Moscow 85, 1072–1081 (2020). https://doi.org/10.1134/S0006297920090072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920090072

Keywords

Navigation