Skip to main content

Myosin Structures

  • Chapter
  • First Online:
Myosins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1239))

Abstract

Directed movements on actin filaments within the cell are powered by molecular motors of the myosin superfamily. On actin filaments, myosin motors convert the energy from ATP into force and movement. Myosin motors power such diverse cellular functions as cytokinesis, membrane trafficking, organelle movements, and cellular migration. Myosin generates force and movement via a number of structural changes associated with hydrolysis of ATP, binding to actin, and release of the ATP hydrolysis products while bound to actin. Herein we provide an overview of those structural changes and how they relate to the actin-myosin ATPase cycle. These structural changes are the basis of chemo-mechanical transduction by myosin motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Coates JH, Criddle AH, Geeves MA (1985) Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment-1 from rabbit skeletal muscle. Biochem 232:351–356

    Article  CAS  Google Scholar 

  • Coureux P-D, Wells AL, Ménétrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) The structure of myosin V motor without bound nucleotide. Nature 425:419–423

    Article  CAS  Google Scholar 

  • Dantzig JA, Goldman YE, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278

    Article  CAS  Google Scholar 

  • De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67

    Article  Google Scholar 

  • Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    Article  CAS  Google Scholar 

  • Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34:8960–8972

    Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103:3681–3686

    Article  CAS  Google Scholar 

  • Holmes KC, Geeves MA (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  Google Scholar 

  • Houdusse A, Sweeney HL (2016) How myosin generates force on actin filaments. Trends Biochem Sci 41:989–997

    Article  CAS  Google Scholar 

  • Houdusse A, Kalabokis VN, Himmel D, Szent-Gyorgyi AG, Cohen C (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97:459–470

    Article  CAS  Google Scholar 

  • Houdusse A, Szent-Györgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243

    Article  CAS  Google Scholar 

  • Huxley H, Reconditi M, Stewart A, Irving T (2006) X-ray interference studies of crossbridge action in muscle contraction: evidence from quick releases. J Mol Biol 363:743–761

    Article  CAS  Google Scholar 

  • Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6(3–4):237–260

    Article  CAS  Google Scholar 

  • Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321:133–136

    Article  CAS  Google Scholar 

  • Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A (2015) How actin initiates the motor activity of myosin. Dev Cell 33(4):401–412

    Article  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  CAS  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin V is a processive actin-based motor. Nature 400:590–593

    Article  CAS  Google Scholar 

  • Ménétrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435:779–785

    Article  Google Scholar 

  • Ménétrey J, Llinas P, Mukherjea M, Sweeney HL, Houdusse A (2007) The structural basis for the large powerstroke of myosin VI. Cell 131:300–308

    Article  Google Scholar 

  • Ménétrey J, Isabet T, Ropars V, Mukherjea M, Pylypenko O, Liu X, Perez J, Vachette P, Sweeney HL, Houdusse AM (2012) Processive steps in the reverse direction require uncoupling of the Lead head lever arm of myosin VI. Mol Cell 48:75–86

    Article  Google Scholar 

  • Mukherjea M, Llinas P, Kim HJ, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin PR, Houdusse A, Sweeney HL (2009) Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell 35:305–315

    Article  CAS  Google Scholar 

  • Oke OA, Burgess SA, Forgacs E, Knight PJ, Sakamoto T, Sellers JR, White H, Trinick J (2010) Influence of lever structure on myosin 5a walking. Proc National Acad Sci 107:2509–2514

    Article  CAS  Google Scholar 

  • Park H, Li A, Chen LQ, Houdusse A, Selvin PR, Sweeney HL (2007) The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc Natl Acad Sci U S A 104:778–783

    Article  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Bäde K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  Google Scholar 

  • Rohde JA, Thomas DD, Muretta JM (2017) Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke. Proc Natl Acad Sci U S A 114:E1796–E1804

    Article  CAS  Google Scholar 

  • Sleep JA, Hutton RL (1980) Exchange between inorganic phosphate and adenosine 5′-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19:1276–1283

    Article  CAS  Google Scholar 

  • Stehle R (2017) Force responses and sarcomere dynamics of cardiac myofibrils induced by rapid changes in [pi]. Biophys J 112:356–367

    Article  CAS  Google Scholar 

  • Suzuki Y, Yasunaga T, Ohkura R, Wakabayashi T, Sutoh K (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396:380–383

    Article  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010a) Myosin VI rewrites the rules for myosin motors. Cell 141:573–582

    Article  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010b) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  Google Scholar 

  • Sweeney HL, Park H, Zong AB, Yang Z, Selvin PR, Rosenfeld SS (2007) How myosin VI coordinates its heads during processive movement. EMBO J 26:2682–2692

    Article  CAS  Google Scholar 

  • Tyska MJ, Warshaw DM (2002) The myosin power stroke. Cell Motil Cytoskeleton 51:1–15

    Article  CAS  Google Scholar 

  • Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7(6):1193–1206

    Article  CAS  Google Scholar 

  • Volkman N, Hanein D, Ouyang G, Trybus KM, DeRosier DJ, Lowey S (2000) Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol 7:1147–1155

    Article  Google Scholar 

  • Walker ML, Burgess SA, Sellers JR, Wang F, Trinick J, Knight PJ (2000) Two-headed binding of a Processive myosin to F-actin. Nature 405:804–807

    Article  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen L-Q, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508

    Article  CAS  Google Scholar 

  • Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM (2018) Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat Commun 9:3838

    Article  Google Scholar 

  • Wulf SF, Ropars V, Fujita-Becker S, Oster M, Hofhaus G, Trabuco LG, Pylypenko O, Sweeney HL, Houdusse AM, Schröder RR (2016) Force-producing ADP state of myosin bound to actin. Proc Natl Acad Sci U S A 113:E1844–E1852

    Article  CAS  Google Scholar 

  • Yengo CM, Chrin L, Rovner AS, Berger CL (1999) Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release. Biochemistry 38:14515–14523

    Article  CAS  Google Scholar 

  • Yount RG, Lawson D, Rayment I (1995) Is myosin a "back door" enzyme? Biophys J 68:44S–47S

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lee Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweeney, H.L., Houdusse, A., Robert-Paganin, J. (2020). Myosin Structures. In: Coluccio, L. (eds) Myosins. Advances in Experimental Medicine and Biology, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-38062-5_2

Download citation

Publish with us

Policies and ethics