Biochemistry (Moscow)

, Volume 83, Issue 4, pp 302–312 | Cite as

Structural–Functional Domains of the Eukaryotic Genome

Review
  • 1 Downloads

Abstract

It is well known that DNA folding in the eukaryotic cell nucleus is tightly coupled with the operation of epigenetic mechanisms defining the repertoires of the genes expressed in different types of cells. To understand these mechanisms, it is important to know how DNA is packaged in chromatin. About 30 years ago a hypothesis was formulated, according to which epigenetic mechanisms operate not at the level of individual genes, but rather groups of genes localized in structurally and functionally isolated genomic segments that were called structural and functional domains. The question of what exactly these domains constitute has been re-examined multiple times as our knowledge of principles of chromatin folding has changed. In this review, we discuss structural and functional genomic domains in light of the current model of interphase chromosome organization based on the results of analysis of spatial proximity between remote genomic elements.

Keywords

chromatin cell nucleus topologically associating domain Hi-C noncoding RNA gene activation 

Abbreviations

eRNA

enhancer RNA

Hi-C

high-throughput chromosome conformation capture

TAD

topologically asso-ciating domain

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stalder, J., Larsen, A., Engel, J. D., Dolan, M., Groudine, M., and Weintraub, H. (1980) Tissue-specific DNA cleav-ages in the globin chromatin domain introduced by DNAase I, Cell, 20, 451–460.PubMedGoogle Scholar
  2. 2.
    Grosveld, F., van Assandelt, G. B., Greaves, D. R., and Kollias, B. (1987) Position-independent, high-level expres-sion of the human β-globin gene in transgenic mice, Cell, 51, 975–985.Google Scholar
  3. 3.
    Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M. (1990) A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and repli-cation across the entire β-globin locus, Genes Dev., 4, 1637–1649.PubMedGoogle Scholar
  4. 4.
    Bodnar, J. W. (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution, J. Theor. Biol., 132, 479–507.PubMedGoogle Scholar
  5. 5.
    Goldman, M. A. (1988) The chromatin domain as a unit of gene regulation, BioEssays, 9, 50–55.PubMedGoogle Scholar
  6. 6.
    Razin, S. V., Farrell, C. M., and Recillas-Targa, F. (2003) Genomic domains and regulatory elements operating at the domain level, Int. Rev. Cytol., 226, 63–125.PubMedGoogle Scholar
  7. 7.
    Dillon, N., and Sabbatini, P. (2000) Functional gene expression domains: defining the functional units of eukaryotic gene regulation, BioEssays, 22, 657–665.PubMedGoogle Scholar
  8. 8.
    Flint, J., Tufarelli, C., Peden, J., Clark, K., Daniels, R. J., Hardison, R., Miller, W., Philipsen, S., Tan-Un, K. C., McMorrow, T., Frampton, J., Alter, B. P., Frischauf, A. M., and Higgs, D. R. (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regula-tory elements in the alpha globin cluster, Hum. Mol. Genet., 10, 371–382.PubMedGoogle Scholar
  9. 9.
    Razin, S. V., Iarovaia, O. V., Sjakste, N., Sjakste, T., Bagdoniene, L., Rynditch, A. V., Eivazova, E. R., Lipinski, M., and Vassetzky, Y. S. (2007) Chromatin domains and regulation of transcription, J. Mol. Biol., 369, 597–607.PubMedGoogle Scholar
  10. 10.
    Symmons, O., and Spitz, F. (2013) From remote enhancers to gene regulation: charting the genome’s regulatory land-scapes, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368, 20120358.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Symmons, O., Uslu, V. V., Tsujimura, T., Ruf, S., Nassari, S., Schwarzer, W., Ettwiller, L., and Spitz, F. (2014) Functional and topological characteristics of mammalian regulatory domains, Genome Res., 24, 390–400.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Montavon, T., Soshnikova, N., Mascrez, B., Joye, E., Thevenet, L., Splinter, E., de Laat, W., Spitz, F., and Duboule, D. (2011) A regulatory archipelago controls Hox genes transcription in digits, Cell, 147, 1132–1145.PubMedGoogle Scholar
  13. 13.
    Lupianez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., and Mundlos, S. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions, Cell, 161, 1012–1025.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Franke, M., Ibrahim, D. M., Andrey, G., Schwarzer, W., Heinrich, V., Schopflin, R., Kraft, K., Kempfer, R., Jerkovic, I., Chan, W. L., Spielmann, M., Timmermann, B., Wittler, L., Kurth, I., Cambiaso, P., Zuffardi, O., Houge, G., Lambie, L., Brancati, F., Pombo, A., Vingron, M., Spitz, F., and Mundlos, S. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications, Nature, 538, 265–269.PubMedGoogle Scholar
  15. 15.
    Valton, A. L., and Dekker, J. (2016) TAD disruption as oncogenic driver, Curr. Opin. Genet. Dev., 36, 34–40.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Getzenberg, R. H., Pienta, K. J., Ward, W. S., and Coffey, D. S. (1991) Nuclear structure and the three-dimensional organization of DNA, J. Cell. Biochem., 47, 289–299.PubMedGoogle Scholar
  17. 17.
    Jackson, D. A., Dickinson, P., and Cook, P. R. (1990) The size of chromatin loops in HeLa cells, EMBO J., 9, 567–571.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wanner, G., and Formanek, H. (2000) A new chromosome model, J. Struct. Biol., 132, 147–161.PubMedGoogle Scholar
  19. 19.
    Sedat, J., and Manuelidis, L. (1978) A direct approach to the structure of eukaryotic chromosomes, Cold Spring Harb. Symp. Quant. Biol., 42, 331–350.PubMedGoogle Scholar
  20. 20.
    Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T., and Belmont, A. S. (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure, J. Cell. Biol., 166, 775–785.PubMedGoogle Scholar
  21. 21.
    Fussner, E., Strauss, M., Djuric, U., Li, R., Ahmed, K., Hart, M., Ellis, J., and Bazett-Jones, D. P. (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres, EMBO Rep., 13, 992–996.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gan, L., Ladinsky, M. S., and Jensen, G. J. (2013) Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes, Chromosoma, 122, 377–386.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Eltsov, M., Maclellan, K. M., Maeshima, K., Frangakis, A. S., and Dubochet, J. (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ, Proc. Natl. Acad. Sci. USA, 105, 19732–19737.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Maeshima, K., Imai, R., Hikima, T., and Joti, Y. (2014) Chromatin structure revealed by X-ray scattering analysis and computational modeling, Methods, 70, 154–161.PubMedGoogle Scholar
  25. 25.
    Maeshima, K., Imai, R., Tamura, S., and Nozaki, T. (2014) Chromatin as dynamic 10-nm fibers, Chromosoma, 123, 225–237.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Maeshima, K., Rogge, R., Tamura, S., Joti, Y., Hikima, T., Szerlong, H., Krause, C., Herman, J., Seidel, E., DeLuca, J., Ishikawa, T., and Hansen, J. C. (2016) Nucleosomal arrays self-assemble into supramolecular globular struc-tures lacking 30-nm fibers, EMBO J., 35, 1115–1132.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ou, H. D., Phan, S., Deerinck, T. J., Thor, A., Ellisman, M. H., and O’Shea, C. C. (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, 357, pii: eaag0025.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hu, Y., Kireev, I., Plutz, M., Ashourian, N., and Belmont, A. S. (2009) Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template, J. Cell. Biol., 185, 87–100.PubMedGoogle Scholar
  29. 29.
    Pepenella, S., Murphy, K. J., and Hayes, J. J. (2014) Intra-and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure, Chromosoma, 123, 3–13.PubMedGoogle Scholar
  30. 30.
    Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002) Capturing chromosome conformation, Science, 295, 1306–1311.PubMedGoogle Scholar
  31. 31.
    Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., Gribnau, J., Barillot, E., Bluthgen, N., Dekker, J., and Heard, E. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, 485, 381–385.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012) Three-dimensional folding and func-tional organization principles of the Drosophila genome, Cell, 148, 458–472.PubMedGoogle Scholar
  35. 35.
    Rowley, M. J., Nichols, M. H., Lyu, X., Ando-Kuri, M., Rivera, I. S. M., Hermetz, K., Wang, P., Ruan, Y., and Corces, V. G. (2017) Evolutionarily conserved principles predict 3D chromatin organization, Mol. Cell., 67, 837–852.PubMedGoogle Scholar
  36. 36.
    Ulianov, S. V., Galitsyna, A. A., Flyamer, I. M., Golov, A. K., Khrameeva, E. E., Imakaev, M. V., Abdennur, N. A., Gelfand, M. S., Gavrilov, A. A., and Razin, S. V. (2017) Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial struc-ture, Epigenet. Chromat., 10, 35.Google Scholar
  37. 37.
    Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., and Weigel, D. (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana, Genome Res., 25, 246–256.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hsieh, T. H., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., and Rando, O. J. (2015) Mapping nucleosome resolu-tion chromosome folding in yeast by micro-C, Cell, 162, 108–119.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Eser, U., Chandler-Brown, D., Ay, F., Straight, A. F., Duan, Z., Noble, W. S., and Skotheim, J. M. (2017) Form and function of topologically associating genomic domains in budding yeast, Proc. Natl. Acad. Sci. USA, 114, 3061–3070.Google Scholar
  40. 40.
    Nikolaou, C. (2017) Invisible cities: segregated domains in the yeast genome with distinct structural and functional attributes, Curr. Genet., doi: 10.1007/s00294-017-0731-6.Google Scholar
  41. 41.
    Dixon, J. R., Gorkin, D. U., and Ren, B. (2016) Chromatin domains: the unit of chromosome organization, Mol. Cell., 62, 668–680.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D. T., Tanay, A., and Hadjur, S. (2015) Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture, Cell. Rep., 10, 1297–1309.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer, I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Logacheva, M. D., Imakaev, M. V., Chertovich, A., Gelfand, M. S., Shevelyov, Y. Y., and Razin, S. V. (2016) Active chromatin and transcription play a key role in chromosome partition-ing into topologically associating domains, Genome Res., 26, 70–84.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Fraser, J., Ferrai, C., Chiariello, A. M., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B. L., Kraemer, D. C., Aitken, S., Xie, S. Q., Morris, K. J., Itoh, M., Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A. R., Consortium, F., Semple, C. A., Dostie, J., Pombo, A., and Nicodemi, M. (2015) Hierarchical folding and reorganiza-tion of chromosomes are linked to transcriptional changes in cellular differentiation, Mol. Syst. Biol., 11, 852.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Weinreb, C., and Raphael, B. J. (2016) Identification of hier-archical chromatin domains, Bioinformatics, 32, 1601–1609.PubMedGoogle Scholar
  46. 46.
    Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014) A 3D map of the human genome at kilobase resolu-tion reveals principles of chromatin looping, Cell, 159, 1665–1680.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Hou, C., Li, L., Qin, Z. S., and Corces, V. G. (2012) Gene density, transcription, and insulators contribute to the par-tition of the Drosophila genome into physical domains, Mol. Cell., 48, 471–484.PubMedGoogle Scholar
  48. 48.
    Pope, B. D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D. L., Wang, Y., Hansen, R. S., Canfield, T. K., Thurman, R. E., Cheng, Y., Gulsoy, G., Dennis, J. H., Snyder, M. P., Stamatoyannopoulos, J. A., Taylor, J., Hardison, R. C., Kahveci, T., Ren, B., and Gilbert, D. M. (2014) Topologically associating domains are stable units of replication-timing regulation, Nature, 515, 402–405.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhan, Y., Mariani, L., Barozzi, I., Schulz, E. G., Bluthgen, N., Stadler, M., Tiana, G., and Giorgetti, L. (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privi-leged scale in the hierarchical folding of chromosomes, Genome Res., 27, 479–490.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Markaki, Y., Gunkel, M., Schermelleh, L., Beichmanis, S., Neumann, J., Heidemann, M., Leonhardt, H., Eick, D., Cremer, C., and Cremer, T. (2010) Functional nuclear organization of transcription and DNA replication: a topo-graphical marriage between chromatin domains and the interchromatin compartment, Cold Spring Harb. Symp. Quant. Biol., 75, 475–492.PubMedGoogle Scholar
  51. 51.
    Smeets, D., Markaki, Y., Schmid, V. J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., Leonhardt, H., Brockdorff, N., Cremer, T., Schermelleh, L., and Cremer, M. (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci, Epigenet. Chromat., 7, 8.Google Scholar
  52. 52.
    Kolbl, A. C., Weigl, D., Mulaw, M., Thormeyer, T., Bohlander, S. K., Cremer, T., and Dietzel, S. (2012) The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains, Chromosome Res., 20, 735–752.PubMedGoogle Scholar
  53. 53.
    Nora, E. P., Dekker, J., and Heard, E. (2013) Segmental folding of chromosomes: a basis for structural and regulato-ry chromosomal neighborhoods? BioEssays, 35, 818–828.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fabre, P. J., Benke, A., Joye, E., Nguyen Huynh, T. H., Manley, S., and Duboule, D. (2015) Nanoscale spatial organization of the HoxD gene cluster in distinct transcrip-tional states, Proc. Natl. Acad. Sci. USA, 112, 13964–13969.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang, S., Su, J. H., Beliveau, B. J., Bintu, B., Moffitt, J. R., Wu, C. T., and Zhuang, X. (2016) Spatial organization of chromatin domains and compartments in single chromo-somes, Science, 353, 598–602.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A., and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59–64.PubMedGoogle Scholar
  57. 57.
    Nagano, T., Lubling, Y., Varnai, C., Dudley, C., Leung, W., Baran, Y., Mendelson Cohen, N., Wingett, S., Fraser, P., and Tanay, A. (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution, Nature, 547, 61–67.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Flyamer, I. M., Gassler, J., Imakaev, M., Brandao, H. B., Ulianov, S. V., Abdennur, N., Razin, S. V., Mirny, L. A., and Tachibana-Konwalski, K. (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition, Nature, 544, 110–114.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ulianov, S. V., Tachibana-Konwalski, K., and Razin, S. V. (2017) Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organ-ization, BioEssays, 39, doi: 10.1002/bies.201700104.Google Scholar
  60. 60.
    Stevens, T. J., Lando, D., Basu, S., Atkinson, L. P., Cao, Y., Lee, S. F., Leeb, M., Wohlfahrt, K. J., Boucher, W., O’Shaughnessy-Kirwan, A., Cramard, J., Faure, A. J., Ralser, M., Blanco, E., Morey, L., Sanso, M., Palayret, M. G. S., Lehner, B., Di Croce, L., Wutz, A., Hendrich, B., Klenerman, D., and Laue, E. D. (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C, Nature, 544, 59–64.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Vernimmen, D., and Bickmore, W. A. (2015) The hierarchy of transcriptional activation: from enhancer to promoter, Trends Genet., 31, 696–708.PubMedGoogle Scholar
  62. 62.
    Chepelev, I., Wei, G., Wangsa, D., Tang, Q., and Zhao, K. (2012) Characterization of genome-wide enhancer–pro-moter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization, Cell. Res., 22, 490–503.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Mifsud, B., Tavares-Cadete, F., Young, A. N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S. W., Andrews, S., Grey, W., Ewels, P. A., Herman, B., Happe, S., Higgs, A., LeProust, E., Follows, G. A., Fraser, P., Luscombe, N. M., and Osborne, C. S. (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C, Nat. Genet., 47, 598–606.PubMedGoogle Scholar
  64. 64.
    Williamson, I., Berlivet, S., Eskeland, R., Boyle, S., Illingworth, R. S., Paquette, D., Dostie, J., and Bickmore, W. A. (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluores-cence in situ hybridization, Genes Dev., 28, 2778–2791.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Williamson, I., Lettice, L. A., Hill, R. E., and Bickmore, W. A. (2016) Shh and ZRS enhancer colocalisation is spe-cific to the zone of polarising activity, Development, 143, 2994–3001.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q., and Snyder, M. P. (2014) Genome-wide map of regulatory interactions in the human genome, Genome Res., 24, 1905–1917.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Morgan, S. L., Mariano, N. C., Bermudez, A., Arruda, N. L., Wu, F., Luo, Y., Shankar, G., Jia, L., Chen, H., Hu, J. F., Hoffman, A. R., Huang, C. C., Pitteri, S. J., and Wang, K. C. (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping, Nat. Commun., 8, 15993.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ibn-Salem, J., Muro, E. M., and Andrade-Navarro, M. A. (2016) Co-regulation of paralog genes in the three-dimen-sional chromatin architecture, Nucleic Acids Res., 45, 81–91.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Symmons, O., Pan, L., Remeseiro, S., Aktas, T., Klein, F., Huber, W., and Spitz, F. (2016) The Shh topological domain facilitates the action of remote enhancers by reduc-ing the effects of genomic distances, Dev. Cell., 39, 529–543.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Lucas, J. S., Zhang, Y., Dudko, O. K., and Murre, C. (2014) 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interac-tions, Cell, 158, 339–352.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Dekker, J., and Mirny, L. (2016) The 3D genome as mod-erator of chromosomal communication, Cell, 164, 1110–1121.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Tiana, G., Amitai, A., Pollex, T., Piolot, T., Holcman, D., Heard, E., and Giorgetti, L. (2016) Structural fluctuations of the chromatin fiber within topologically associating domains, Biophys. J., 110, 1234–1245.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Fragkos, M., Ganier, O., Coulombe, P., and Mechali, M. (2015) DNA replication origin activation in space and time, Nat. Rev. Mol. Cell. Biol., 16, 360–374.PubMedGoogle Scholar
  74. 74.
    Rhind, N., and Gilbert, D. M. (2013) DNA replication timing, Cold Spring Harb. Perspect Biol., 5, a010132.Google Scholar
  75. 75.
    Moindrot, B., Audit, B., Klous, P., Baker, A., Thermes, C., de Laat, W., Bouvet, P., Mongelard, F., and Arneodo, A. (2012) 3D chromatin conformation correlates with replica-tion timing and is conserved in resting cells, Nucleic Acids Res., 40, 9470–9481.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K., and Hansen, J. C. (2013) The role of the nucleosome acidic patch in modulating higher order chro-matin structure, J. R. Soc. Interface, 10, 20121022.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucle-osome core particle at 2.8 Å resolution, Nature, 389, 251–260.PubMedGoogle Scholar
  78. 78.
    Sinha, D., and Shogren-Knaak, M. A. (2010) Role of direct interactions between the histone H4 tail and the H2A core in long range nucleosome contacts, J. Biol. Chem., 285, 16572–16581.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., and Peterson, C. L. (2006) Histone H4-K16 acetylation controls chromatin structure and protein inter-actions, Science, 311, 844–847.PubMedGoogle Scholar
  80. 80.
    Allahverdi, A., Yang, R., Korolev, N., Fan, Y., Davey, C. A., Liu, C. F., and Nordenskiold, L. (2011) The effects of his-tone H4 tail acetylations on cation-induced chromatin fold-ing and self-association, Nucleic Acids Res., 39, 1680–1691.PubMedGoogle Scholar
  81. 81.
    Dowen, J. M., Fan, Z. P., Hnisz, D., Ren, G., Abraham, B. J., Zhang, L. N., Weintraub, A. S., Schuijers, J., Lee, T. I., Zhao, K., and Young, R. A. (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes, Cell, 159, 374–387.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hanssen, L. L. P., Kassouf, M. T., Oudelaar, A. M., Biggs, D., Preece, C., Downes, D. J., Gosden, M., Sharpe, J. A., Sloane-Stanley, J. A., Hughes, J. R., Davies, B., and Higgs, D. R. (2017) Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo, Nat. Cell. Biol., 19, 952–961.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., and Darzacq, X. (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics, Elife, 6, pii: e25776.Google Scholar
  84. 84.
    Merkenschlager, M., and Nora, E. P. (2016) CTCF and cohesin in genome folding and transcriptional gene regula-tion, Annu. Rev. Genom. Hum. Genet., 17, 17–43.Google Scholar
  85. 85.
    Narendra, V., Bulajic, M., Dekker, J., Mazzoni, E. O., and Reinberg, D. (2016) CTCF-mediated topological bound-aries during development foster appropriate gene regula-tion, Genes Dev., 30, 2657–2662.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Narendra, V., Rocha, P. P., An, D., Raviram, R., Skok, J. A., Mazzoni, E. O., and Reinberg, D. (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation, Science, 347, 1017–1021.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sanborn, A. L., Rao, S. S., Huang, S. C., Durand, N. C., Huntley, M. H., Jewett, A. I., Bochkov, I. D., Chinnappan, D., Cutkosky, A., Li, J., Geeting, K. P., Gnirke, A., Melnikov, A., McKenna, D., Stamenova, E. K., Lander, E. S., and Aiden, E. L. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. USA, 112, 6456–6465.Google Scholar
  88. 88.
    Zuin, J., Dixon, J. R., van der Reijden, M. I., Ye, Z., Kolovos, P., Brouwer, R. W., van de Corput, M. P., van de Werken, H. J., Knoch, T. A., van Ijcken, W. F., Grosveld, F. G., Ren, B., and Wendt, K. S. (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells, Proc. Natl. Acad. Sci. USA, 111, 996–1001.PubMedGoogle Scholar
  89. 89.
    Nora, E. P., Goloborodko, A., Valton, A. L., Gibcus, J. H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L. A., and Bruneau, B. G. (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization, Cell, 169, 930–944.PubMedGoogle Scholar
  90. 90.
    Vietri Rudan, M., and Hadjur, S. (2015) Genetic tailors: CTCF and cohesin shape the genome during evolution, Trends Genet., 31, 651–660.PubMedGoogle Scholar
  91. 91.
    Holwerda, S., and de Laat, W. (2012) Chromatin loops, gene positioning, and gene expression, Front Genet., 3, 217.PubMedGoogle Scholar
  92. 92.
    Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L. A. (2016) Formation of chro-mosomal domains by loop extrusion, Cell Rep., 15, 2038–2049.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Haarhuis, J. H. I., van der Weide, R. H., Blomen, V. A., Yanez-Cuna, J. O., Amendola, M., van Ruiten, M. S., Krijger, P. H. L., Teunissen, H., Medema, R. H., van Steensel, B., Brummelkamp, T. R., de Wit, E., and Rowland, B. D. (2017) The cohesin release factor WAPL restricts chromatin loop extension, Cell, 169, 693–707.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Rao, S. S. P., Huang, S. C., Glenn St Hilaire, B., Engreitz, J. M., Perez, E. M., Kieffer-Kwon, K. R., Sanborn, A. L., Johnstone, S. E., Bascom, G. D., Bochkov, I. D., Huang, X., Shamim, M. S., Shin, J., Turner, D., Ye, Z., Omer, A. D., Robinson, J. T., Schlick, T., Bernstein, B. E., Casellas, R., Lander, E. S., and Aiden, E. L. (2017) Cohesin loss eliminates all loop domains, Cell, 171, 305–320.PubMedGoogle Scholar
  95. 95.
    Ulianov, S. V., Gavrilov, A. A., and Razin, S. V. (2015) Nuclear compartments, genome folding, and enhancer-promoter communication, Int. Rev. Cell. Mol. Biol., 315, 183–244.PubMedGoogle Scholar
  96. 96.
    Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B. R., Protacio, A., Flynn, R. A., Gupta, R. A., Wysocka, J., Lei, M., Dekker, J., Helms, J. A., and Chang, H. Y. (2011) A long noncod-ing RNA maintains active chromatin to coordinate homeotic gene expression, Nature, 472, 120–124.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Xiang, J. F., Yin, Q. F., Chen, T., Zhang, Y., Zhang, X. O., Wu, Z., Zhang, S., Wang, H. B., Ge, J., Lu, X., Yang, L., and Chen, L. L. (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin inter-actions at the MYC locus, Cell Res., 24, 513–531.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Trimarchi, T., Bilal, E., Ntziachristos, P., Fabbri, G., Dalla-Favera, R., Tsirigos, A., and Aifantis, I. (2014) Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia, Cell, 158, 593–606.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Lai, F., Orom, U. A., Cesaroni, M., Beringer, M., Taatjes, D. J., Blobel, G. A., and Shiekhattar, R. (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription, Nature, 494, 497–501.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Kung, J. T., Kesner, B., An, J. Y., Ahn, J. Y., Cifuentes-Rojas, C., Colognori, D., Jeon, Y., Szanto, A., del Rosario, B. C., Pinter, S. F., Erwin, J. A., and Lee, J. T. (2015) Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF, Mol. Cell., 57, 361–375.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Saldana-Meyer, R., Gonzalez-Buendia, E., Guerrero, G., Narendra, V., Bonasio, R., Recillas-Targa, F., and Reinberg, D. (2014) CTCF regulates the human p53 gene through direct interaction with its natural antisense tran-script, Wrap53, Genes Dev., 28, 723–734.PubMedGoogle Scholar
  102. 102.
    Ong, C. T., and Corces, V. G. (2014) CTCF: an architec-tural protein bridging genome topology and function, Nat. Rev. Genet., 15, 234–246.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Donohoe, M. E., Zhang, L. F., Xu, N., Shi, Y., and Lee, J. T. (2007) Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch, Mol. Cell., 25, 43–56.PubMedGoogle Scholar
  104. 104.
    Sigova, A. A., Abraham, B. J., Ji, X., Molinie, B., Hannett, N. M., Guo, Y. E., Jangi, M., Giallourakis, C. C., Sharp, P. A., and Young, R. A. (2015) Transcription factor trapping by RNA in gene regulatory elements, Science, 350, 978–981.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Engreitz, J. M., Ollikainen, N., and Guttman, M. (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression, Nat. Rev. Mol. Cell Biol., 17, 756–770.PubMedGoogle Scholar
  106. 106.
    Hacisuleyman, E., Goff, L. A., Trapnell, C., Williams, A., Henao-Mejia, J., Sun, L., McClanahan, P., Hendrickson, D. G., Sauvageau, M., Kelley, D. R., Morse, M., Engreitz, J., Lander, E. S., Guttman, M., Lodish, H. F., Flavell, R., Raj, A., and Rinn, J. L. (2014) Topological organization of multichromosomal regions by the long intergenic noncod-ing RNA Firre, Nat. Struct. Mol. Biol., 21, 198–206.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Engreitz, J. M., Pandya-Jones, A., McDonel, P., Shishkin, A., Sirokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E. S., Plath, K., and Guttman, M. (2013) The Xist lncRNA exploits three-dimensional genome architec-ture to spread across the X chromosome, Science, 341, 1237973.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Cook, P. R., Brazell, I. A., and Jost, E. (1976) Characterization of nuclear structures containing superhe-lical DNA, J. Cell. Sci., 22, 303–324.PubMedGoogle Scholar
  109. 109.
    Paulson, J. R., and Laemmli, U. K. (1977) The structure of histone-depleted metaphase chromosomes, Cell, 12, 817–828.PubMedGoogle Scholar
  110. 110.
    Hancock, R., and Hughes, M. E. (1982) Organization of DNA in the eukaryotic nucleus, Biol. Cell, 44, 201–212.Google Scholar
  111. 111.
    Razin, S. V., Mantieva, V. L., and Georgiev, G. P. (1979) The similarity of DNA sequences remaining bound to scaf-fold upon nuclease treatment of interphase nuclei and metaphase chromosomes, Nucleic Acids Res., 7, 1713–1735.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Razin, S. V., Gromova, I. I., and Iarovaia, O. V. (1995) Specificity and functional significance of DNA interaction with the nuclear matrix: new approaches to clarify the old questions, Int. Rev. Cytol., 162B, 405–448.PubMedGoogle Scholar
  113. 113.
    Razin, S. V., Iarovaia, O. V., and Vassetzky, Y. S. (2014) A requiem to the nuclear matrix: from a controversial con-cept to 3D organization of the nucleus, Chromosoma, 123, 217–224.PubMedGoogle Scholar
  114. 114.
    Cook, P. R. (1989) The nucleoskeleton and the topology of transcription, Eur. J. Biochem., 185, 487–501.PubMedGoogle Scholar
  115. 115.
    Cook, P. R. (2002) Predicting three-dimensional genome structure from transcriptional activity, Nat. Genet., 32, 347–352.PubMedGoogle Scholar
  116. 116.
    Robinson, S. I., Small, D., Idzerda, R., McKnight, G. S., and Vogelstein, B. (1983) The association of active genes with the nuclear matrix of the chicken oviduct, Nucleic Acids Res., 15, 5113–5130.Google Scholar
  117. 117.
    Razin, S. V., and Yarovaya, O. V. (1985) Initiated com-plexes of RNA polymerase II are concentrated in the nuclear skeleton associated DNA, Exp. Cell Res., 158, 273–275.PubMedGoogle Scholar
  118. 118.
    Ciejek, E. M., Tsai, M.-J., and O’Malley, B. W. (1983) Actively transcribed genes are associated with the nuclear matrix, Nature, 306, 607–609.PubMedGoogle Scholar
  119. 119.
    Dunn, K. L., Zhao, H., and Davie, J. R. (2003) The insu-lator binding protein CTCF associates with the nuclear matrix, Exp. Cell Res., 288, 218–223.PubMedGoogle Scholar
  120. 120.
    Yusufzai, T. M., and Felsenfeld, G. (2004) The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element, Proc. Natl. Acad. Sci. USA, 101, 8620–8624.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Razin, S. V., Hancock, R., Iarovaia, O., Westergaard, O., Gromova, I., and Georgiev, G. P. (1993) Structural-func-tional organization of chromosomal DNA domains, Cold Spring Harbor Symp. Quant. Biol., 58, 25–35.PubMedGoogle Scholar
  122. 122.
    Gromova, I. I., Thomsen, B., and Razin, S. V. (1995) Different topoisomerase II antitumor drugs direct similar specific long-range fragmentation of an amplified c-MYC gene locus in living cells and in high-salt-extracted nuclei, Proc. Natl. Acad. Sci. USA, 92, 102–106.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Uuskula-Reimand, L., Hou, H., Samavarchi-Tehrani, P., Rudan, M. V., Liang, M., Medina-Rivera, A., Mohammed, H., Schmidt, D., Schwalie, P., Young, E. J., Reimand, J., Hadjur, S., Gingras, A. C., and Wilson, M. D. (2016) Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders, Genome Biol., 17, 182.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Eagen, K. P., Hartl, T. A., and Kornberg, R. D. (2015) Stable chromosome condensation revealed by chromo-some conformation capture, Cell, 163, 934–946.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Schwartz, Y. B., Ioudinkova, E. S., Demakov, S. A., Razin, S. V., and Zhimulev, I. F. (1999) Interbands of Drosophila melanogaster polytene chromosomes contain matrix asso-ciation regions, J. Cell. Biochem., 72, 368–372.PubMedGoogle Scholar
  126. 126.
    De Wit, E., and de Laat, W. (2012) A decade of 3C tech-nologies: insights into nuclear organization, Genes Dev., 26, 11–24.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Bystricky, K. (2015) Chromosome dynamics and folding in eukaryotes: insights from live cell microscopy, FEBS Lett., 589, 3014–3022.PubMedGoogle Scholar
  128. 128.
    Razin, S. V., Gavrilov, A. A., Ioudinkova, E. S., and Iarovaia, O. V. (2013) Communication of genome regula-tory elements in a folded chromosome, FEBS Lett., 587, 1840–1847.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityBiological FacultyMoscowRussia

Personalised recommendations