Skip to main content
Log in

Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array–array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, Liu CF, Nordenskiold L (2011) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Allan J, Hartman PG, Crane-Robinson C, Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288:675–679

    Article  PubMed  CAS  Google Scholar 

  • Allan J, Harborne N, Rau DC, Gould H (1982) Participation of the core histone tails in the stabilization of the chromatin solenoid. J Cell Biol 93:285–297

    Article  PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Angelov D, Vitolo JM, Mutskov V, Dimitrov S, Hayes JJ (2001) Preferential interaction of the core histone tail domains with linker DNA. Proc Natl Acad Sci U S A 98:6599–6604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Annunziato AT, Hansen JC (2000) Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 9:37–61

    PubMed  CAS  Google Scholar 

  • Arents G, Moudrianakis EN (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A 90:10489–10493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE (2011) Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334:977–982

    Article  PubMed  CAS  Google Scholar 

  • Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Charvin G, Siggia ED, Cross FR (2010) Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell 18:544–555

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luher K, Kaye KM (2006) The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science. 311:856–861

    Google Scholar 

  • Bates DL, Butler JG, Pearson EC, Thomas JO (1981) Stability of the higher-order structure of chicken erythrocyte chromatin in solution. Eur J Biochem 119:469–476

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 127:287–302

    Article  PubMed  CAS  Google Scholar 

  • Bohm L, Crane-Robinson C (1984) Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep 4:365–386

    Article  PubMed  CAS  Google Scholar 

  • Camerini-Otero RD, Sollner-Webb B, Felsenfeld G (1976) The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel. Cell 8:333–347

    Article  PubMed  CAS  Google Scholar 

  • Carruthers LM, Bednar J, Woodcock CL, Hansen JC (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37:14776–14787

    Article  PubMed  CAS  Google Scholar 

  • Caterino TL, Fang H, Hayes JJ (2011) Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Mol Cell Biol 31:2341–2348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ (2000) Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J 19:5492–5501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chodaparambil JV, Barbera AJ, Lu X, Kaye KM, Hansen JC, Luger K (2007) A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat Struct Mol Biol 14:1105–1107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clark DJ, Kimura T (1990) Electrostatic mechanism of chromatin folding. J Mol Biol 211:883–896

    Article  PubMed  CAS  Google Scholar 

  • Daban JR (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42:733–750

    Article  PubMed  CAS  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113

    Article  PubMed  CAS  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci U S A 102:5501–5506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96

    Article  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    Article  PubMed  CAS  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ebralidse KK, Grachev SA, Mirzabekov AD (1988) A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA. Nature 331:365–367

    Article  PubMed  CAS  Google Scholar 

  • Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9:172–176

    Article  PubMed  CAS  Google Scholar 

  • Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 16:655–661

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Dong F, Ausio J (1992) Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J Biol Chem 267:19587–19595

    PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270:17923–17928

    Article  PubMed  CAS  Google Scholar 

  • Gordon F, Luger K, Hansen JC (2005) The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem 280:33701–33706

    Article  PubMed  CAS  Google Scholar 

  • Graziano V, Gerchman SE, Ramakrishnan V (1988) Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin. J Mol Biol 203:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Grigoryev SA, Woodcock CL (2012) Chromatin organization—the 30 nm fiber. Exp Cell Res 318:1448–1455

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  PubMed  CAS  Google Scholar 

  • Han M, Grunstein M (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31:361–392

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC, Ausio J, Stanik VH, van Holde KE (1989) Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28:9129–9136

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268:305–314

    PubMed  CAS  Google Scholar 

  • Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    Article  PubMed  CAS  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface 10:20121022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kan PY, Hayes JJ (2007) Detection of interactions between nucleosome arrays mediated by specific core histone tail domains. Methods 41:278–285

    Article  PubMed  CAS  Google Scholar 

  • Kan PY, Lu X, Hansen JC, Hayes JJ (2007) The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol Cell Biol 27:2084–2091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kan PY, Caterino TL, Hayes JJ (2009) The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 29:538–546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kato H, van Ingen H, Zhou BR, Feng H, Bustin M, Kay LE, Bai Y (2011) Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc Natl Acad Sci U S A 108:12283–12288

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee KM, Hayes JJ (1997) The N-terminal tail of histone H2A binds to two distinct sites within the nucleosome core. Proc Natl Acad Sci U S A 94:8959–8964

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee KM, Hayes JJ (1998) Linker DNA and H1-dependent reorganization of histone–DNA interactions within the nucleosome. Biochemistry 37:8622–8628

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  PubMed  CAS  Google Scholar 

  • Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15:188–196

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mirzabekov AD, Bavykin SG, Karpov VL, Preobrazhenskaya OV, Ebralidze KK, Tuneev VM, Melnikova AF, Goguadze EG, Chenchick AA, Beabealashvili RS (1983) Structure of nucleosomes, chromatin, and RNA polymerase–promoter complex as revealed by DNA–protein cross-linking. Cold Spring Harb Symp Quant Biol 47:503–510

    Article  PubMed  Google Scholar 

  • Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31:1644–1653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Article  PubMed  CAS  Google Scholar 

  • Polach KJ, Lowary PT, Widom J (2000) Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J Mol Biol 298:211–233

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362:219–224

    Article  PubMed  CAS  Google Scholar 

  • Ridsdale JA, Hendzel MJ, Delcuve GP, Davie JR (1990) Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J Biol Chem 265:5150–5156

    PubMed  CAS  Google Scholar 

  • Roberge M, O'Neill TE, Bradbury EM (1991) Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation. FEBS Lett 288:215–218

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825

    Article  PubMed  CAS  Google Scholar 

  • Schwarz PM, Felthauser A, Fletcher TM, Hansen JC (1996) Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35:4009–4015

    Article  PubMed  CAS  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT (1978) Structure of chromatin containing extensively acetylated H3 and H4. Cell 13:691–699

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Shogren-Knaak MA (2010) Role of direct interactions between the histone H4 tail and the H2A core in long range nucleosome contacts. J Biol Chem 285:16572–16581

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith RM, Rill RL (1989) Mobile histone tails in nucleosomes. Assignments of mobile segments and investigations of their role in chromatin folding. J Biol Chem 264:10574–10581

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Syed SH, Goutte-Gattat D, Becker N, Meyer S, Shukla MS, Hayes JJ, Everaers R, Angelov D, Bednar J, Dimitrov S (2010) Single-base resolution mapping of H1–nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci U S A 107:9620–9625

    Article  PubMed Central  PubMed  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Tremethick DJ (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128:651–654

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Hansen JC (1997) Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36:11381–11388

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638

    PubMed Central  PubMed  CAS  Google Scholar 

  • Usachenko SI, Bavykin SG, Gavin IM, Bradbury EM (1994) Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc Natl Acad Sci U S A 91:6845–6849

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Holde KE (1989) Chromatin. Springer, New York

    Book  Google Scholar 

  • Vettese-Dadey M, Walter P, Chen H, Juan LJ, Workman JL (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14:970–981

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vitolo JM, Yang Z, Basavappa R, Hayes JJ (2004) Structural features of transcription factor IIIA bound to a nucleosome in solution. Mol Cell Biol 24:697–707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker IO (1984) Differential dissociation of histone tails from core chromatin. Biochemistry 23:5622–5628

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hayes JJ (2007) Site-specific binding affinities within the H2B tail domain indicate specific effects of lysine acetylation. J Biol Chem 282:32867–32876

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Whitlock JP Jr, Stein A (1978) Folding of DNA by histones which lack their NH2-terminal regions. J Biol Chem 253:3857–3861

    PubMed  CAS  Google Scholar 

  • Widom J (1986) Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. J Mol Biol 190:411–424

    Article  PubMed  CAS  Google Scholar 

  • Widom J, Finch JT, Thomas JO (1985) Higher-order structure of long repeat chromatin. EMBO J 4:3189–3194

    PubMed Central  PubMed  CAS  Google Scholar 

  • Williams SP, Langmore JP (1991) Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length. Biophys J 59:606–618

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11:130–135

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 280:33552–33557

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Fan JY, Rangasamy D, Tremethick DJ (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070–1076

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Hayes.

Additional information

Sharon Pepenella and Kevin J. Murphy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepenella, S., Murphy, K.J. & Hayes, J.J. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 123, 3–13 (2014). https://doi.org/10.1007/s00412-013-0435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0435-8

Keywords

Navigation