Skip to main content
Log in

Analysis of photoprotection and apparent non-photochemical quenching of chlorophyll fluorescence in Tradescantia leaves based on the rate of irradiance-induced changes in optical transparence

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The kinetics of irradiation-induced changes in leaf optical transparence (ΔT) and non-photochemical quenching (NPQ) of chlorophyll fluorescence in Tradescantia fluminensis and T. sillamontana leaves adapted to different irradiance in nature was analyzed. Characteristic times of a photoinduced increase and a dark decline of ΔT in these species were 12 and 20 min, respectively. The ΔT was not confirmed to be the main contributor to the observed middle phase of NPQ relaxation kinetics (τ = 10-28 min). Comparison of rate of photoinduced increase in ΔT and photosystem II quantum yield recovery showed that the former did not affect the tolerance of the photosynthetic apparatus (PSA) to irradiances up to 150 μmol PAR·m–2·s–1. Irradiance tolerance correlated with the rate of “apparent NPQ” induction. Considering that the induction of apparent NPQ involves processes significantly faster than ΔT, we suggest that the photoprotective mechanism induction rate is crucial for tolerance of the PSA to moderate irradiance during the initial stage of light acclimation (first several minutes upon the onset of illumination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFI:

chlorophyll fluorescence induction

HL:

high light

IIT:

irradiance-induced increase in leaf light transmittance

LL:

low light

NPQ:

non-photochemical quenching

PAR:

photosynthetically active radiation

PSA:

photosynthetic apparatus

PSII:

photosystem II

ROS:

reactive oxygen species

References

  1. Muller, P., Li, X.-P., and Niyogi, K. K. (2001) Non-photochemical quenching. A response to excess light energy, Plant Physiol., 125, 1558–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., doi: 10.1155/2012/217037.

  3. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W., 3rd (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res., 113, 75–88.

    Article  CAS  PubMed  Google Scholar 

  4. Demmig, B., Winter, K., Kruger, A., and Czygan, F.-C. (1987) Photoinhibition and zeaxanthin formation in intact leaves a possible role of the xanthophyll cycle in the dissipation of excess light energy, Plant Physiol., 84, 218–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jahns, P., and Holzwarth, A. R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II, Biochim. Biophys. Acta, 1817, 182–193.

    Article  CAS  PubMed  Google Scholar 

  6. Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M., and Wada, M. (2002) Chloroplast avoidance movement reduces photodamage in plants, Nature, 420, 829–832.

    Article  CAS  PubMed  Google Scholar 

  7. Pfundel, E. E., and Dilley, R. A. (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts, Plant Physiol., 101, 65–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kong, S.-G., and Wada, M. (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement, Biochim. Biophys. Acta, 1837, 522–530.

    Article  CAS  PubMed  Google Scholar 

  9. Koniger, M. (2014) in Photosynthesis in Bryophytes and Early Land Plants (Hanson, D. T., and Rice, S. K., eds.) Springer, Dordrecht, pp. 131–150.

  10. Kong, S.-G., and Wada, M. (2016) Molecular basis of chloroplast photorelocation movement, J. Plant Res., 129, 159–166.

    Article  CAS  PubMed  Google Scholar 

  11. Samoilova, O. P., Ptushenko, V. V., Kuvykin, I. V., Kiselev, S. A., Ptushenko, O. S., and Tikhonov, A. N. (2011) Effects of light environment on the induction of chlorophyll fluorescence in leaves: a comparative study of Tradescantia species of different ecotypes, Biosystems, 105, 41–48.

    Article  CAS  PubMed  Google Scholar 

  12. Ptushenko, V. V., Ptushenko, E. A., Samoilova, O. P., and Tikhonov, A. N. (2013) Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light, Biosystems, 114, 85–97.

    Article  CAS  PubMed  Google Scholar 

  13. Ptushenko, V. V., Ptushenko, O. S., Samoilova, O. P., and Solovchenko, A. E. (2016) An exceptional irradianceinduced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and zeaxanthin-mediated photoprotection, Biol. Plant., 60, 385–393.

    Article  CAS  Google Scholar 

  14. Davis, P. A., Caylor, S., Whippo, C. W., and Hangarter, R. P. (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements, Plant Cell Environ., 34, 2047–2059.

    Article  CAS  PubMed  Google Scholar 

  15. Schreiber, U., Schliwa, U., and Bilger, W. (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynt. Res., 10, 51–62.

    Article  CAS  Google Scholar 

  16. Koniger, M., and Bollinger, N. (2012) Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance, Planta, 236, 411426.

    Article  Google Scholar 

  17. Maxwell, K., and Johnson, G. N. (2000) Chlorophyll fluorescence–a practical guide, J. Exp. Bot., 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  18. Ptushenko, V. V., Ptushenko, O. S., and Tikhonov, A. N. (2014) Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreus plants, Biochemistry (Moscow), 79, 338–352.

    Google Scholar 

  19. Merzlyak, M., Solovchenko, A., and Pogosyan, S. (2005) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function, Photochem. Photobiol. Sci., 4, 333–340.

    Article  CAS  PubMed  Google Scholar 

  20. Urbanik, E., and Ware, B. R. (1989) Actin filament capping and cleaving activity of cytochalasins B,D,E,and H, Arch. Biochem. Biophys., 269, 181–187.

    Article  CAS  PubMed  Google Scholar 

  21. Suetsugu, N., and Wada, M. (2012) in Advances in Photosynthesis–Fundamental Aspects (Najafpour, M., ed.) InTech, Rijeka-Shanghai, pp. 215–234.

  22. Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Muller, M., Holzwarth, A. R., and Jahns, P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis, Biochim. Biophys. Acta, 1797, 466–475.

    Article  CAS  PubMed  Google Scholar 

  23. Cazzaniga, S., Dall’ Osto, L., Kong, S.-G., Wada, M., and Bassi, R. (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis, Plant J., 76, 568–579.

    CAS  PubMed  Google Scholar 

  24. Tikhonov, A. N. (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynt. Res., 125, 65–94.

    Article  CAS  Google Scholar 

  25. Kono, M., and Terashima, I. (2014) Long-term and shortterm responses of the photosynthetic electron transport to fluctuating light, J. Photochem. Photobiol. B Biol., 137, 8999.

    Article  Google Scholar 

  26. Tikkanen, M., Grieco, M., Nurmi, M., Rantala, M., Suorsa, M., and Aro, E.-M. (2012) Regulation of the photosynthetic apparatus under fluctuating growth light, Philos. Trans. R Soc. B, 367, 3486–3493.

    Article  CAS  Google Scholar 

  27. Davis, P. A., and Hangarter, R. P. (2012) Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves, Photosynt. Res., 112, 153161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ptushenko.

Additional information

Original Russian Text © V. V. Ptushenko, O. S. Ptushenko, O. P. Samoilova, A. E. Solovchenko, 2017, published in Biokhimiya, 2017, Vol. 82, No. 1, pp. 157-166.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptushenko, V.V., Ptushenko, O.S., Samoilova, O.P. et al. Analysis of photoprotection and apparent non-photochemical quenching of chlorophyll fluorescence in Tradescantia leaves based on the rate of irradiance-induced changes in optical transparence. Biochemistry Moscow 82, 67–74 (2017). https://doi.org/10.1134/S0006297917010072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917010072

Keywords

Navigation