Skip to main content
Log in

Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice

  • Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The process of tissue regeneration following damage takes place with direct participation of the immune system. The use of biomaterials as scaffolds to facilitate healing of skin wounds is a new and interesting area of regenerative medicine and biomedical research. In many ways, the regenerative potential of biological material is related to its ability to modulate the inflammatory response. At the same time, all foreign materials, once implanted into a living tissue, to varying degree cause an immune reaction. The modern approach to the development of bioengineered structures for applications in regenerative medicine should be directed toward using the properties of the inflammatory response that improve healing, but do not lead to negative chronic manifestations. In this work, we studied the effect of microcarriers comprised of either fibroin or fibroin supplemented with gelatin on the dynamics of the healing, as well as inflammation, during regeneration of deep skin wounds in mice. We found that subcutaneous administration of microcarriers to the wound area resulted in uniform contraction of the wounds in mice in our experimental model, and microcarrier particles induced the infiltration of immune cells. This was associated with increased expression of proinflammatory cytokines TNF, IL-6, IL-1β, and chemokines CXCL1 and CXCL2, which contributed to full functional recovery of the injured area and the absence of fibrosis as compared to the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CXCL1(2):

CXC-chemokine ligand 1(2)

F:

fibroin

FG:

fibroin-gelatin

FG-MC:

fibroin microcarriers supplemented with gelatin

F-MC:

fibroin microcarriers

IL1ß:

interleukin 1ß

IL-6:

interleukin 6

PBS:

phosphate buffered saline

TNF:

tumor necrosis factor

References

  1. Eming, S. A., Krieg, T., and Davidson, J. M. (2007) Inflammation in wound repair: molecular and cellular mechanisms, J. Invest. Dermatol., 127, 514–525.

    Article  CAS  PubMed  Google Scholar 

  2. Martin, P., and Leibovich, S. J. (2005) Inflammatory cells during wound repair: the good, the bad and the ugly, Trends Cell Biol., 15, 599–607.

    Article  CAS  PubMed  Google Scholar 

  3. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., and Tomic-Canic, M. (2008) Growth factors and cytokines in wound healing, Wound Repair Regen., 16, 585–601.

    Article  PubMed  Google Scholar 

  4. Wynn, T. A., and Vannella, K. M. (2016) Macrophages in tissue repair, regeneration, and fibrosis, Immunity, 44, 450462.

    Google Scholar 

  5. Gurtner, G. C., Werner, S., Barrandon, Y., and Longaker, M. T. (2008) Wound repair and regeneration, Nature, 453, 314–321.

    Article  CAS  PubMed  Google Scholar 

  6. Boateng, J., and Catanzano, O. (2015) Advanced therapeutic dressings for effective wound healing–a review, J. Pharm. Sci., 104, 3653–3680.

    Article  CAS  PubMed  Google Scholar 

  7. Broussard, K. C., and Powers, J. G. (2013) Wound dressings: selecting the most appropriate type, Am. J. Clin. Dermatol., 14, 449–459.

    Article  PubMed  Google Scholar 

  8. Kapoor, S., and Kundu, S. C. (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications, Acta Biomater., 31, 17–32.

    Article  CAS  PubMed  Google Scholar 

  9. Melke, J., Midha, S., Ghosh, S., Ito, K., and Hofmann, S. (2016) Silk fibroin as biomaterial for bone tissue engineering, Acta Biomater., 31, 1–16.

    Article  CAS  PubMed  Google Scholar 

  10. Kanokpanont, S., Damrongsakkul, S., Ratanavaraporn, J., and Aramwit, P. (2013) Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing, Int. J. Biol. Macromol., 55, 88–97.

    Article  CAS  PubMed  Google Scholar 

  11. Arkhipova, A. Y., Kotlyarova, M. S., Novichkova, S. G., Agapova, O. I., Kulikov, D. A., Kulikov, A. V., Drutskaya, M. S., Agapov, I. I., and Moisenovich, M. M. (2016) New silk fibroin-based bioresorbable microcarriers, Bull. Exp. Biol. Med., 160, 491–494.

    Article  CAS  PubMed  Google Scholar 

  12. Moisenovich, M. M., Arkhipova, A. Yu., Orlova, A. A., Drutskaya, M. S., Volkova, S. V., Zacharov, S. E., Agapov, I. I., and Kirpichnikov, M. P. (2014) Composite scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D cell culturing, Acta Naturae, 6, 96–101.

    CAS  PubMed  Google Scholar 

  13. Wang, Y., Rudym, D. D., Walsh, A., Abrahamsen, L., Kim, H. J., Kim, H. S., Kirker-Head, C., and Kaplan, D. L. (2008) In vivo degradation of three-dimensional silk fibroin scaffolds, Biomaterials, 29, 3415–3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, S. H., Gil, E. S., Kim, H. J., Lee, K., and Kaplan, D. L. (2010) Relationships between degradability of silk scaffolds and osteogenesis, Biomaterials, 31, 6162–6172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thurber, A. E., Omenetto, F. G., and Kaplan, D. L. (2015) In vivo bioresponses to silk proteins, Biomaterials, 71, 145–157.

    Article  CAS  PubMed  Google Scholar 

  16. Foss, C., Merzari, E., Migliaresi, C., and Motta, A. (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering, Biomacromolecules, 14, 38–47.

    Article  CAS  PubMed  Google Scholar 

  17. Chi, N. H., Yang, M. C., Chung, T. W., Chou, N. K., and Wang, S. S. (2013) Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction, Carbohydr. Polym., 92, 591–597.

    Article  CAS  PubMed  Google Scholar 

  18. Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G., and Kaplan, D. L. (2007) Silk fibroin microtubes for blood vessel engineering, Biomaterials, 28, 5271–5279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Z., Xu, L. S., Yin, F., Shi, Y. Q., Han, Y., Zhang, L., Jin, H. F., Nie, Y. Z., Wang, J. B., Hao, X., Fan, D. M., and Zhou, X. M. (2012) In vitro and in vivo characterization of silk fibroin/gelatin composite scaffolds for liver tissue engineering, J. Dig. Dis., 13, 168–178.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Q., Liu, H., and Fan, Y. (2015) Preparation of silk fibroin carriers for controlled release, Microsc. Res. Tech., doi: 10.1002/jemt.22606.

  21. Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Young Kweon, H., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y., Choe, J., and Lee, J. H. (2006) Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat, J. Mater. Sci. Mater. Med., 17, 547–552.

    Article  CAS  PubMed  Google Scholar 

  22. Moisenovich, M. M., Pustovalova, O., Shackelford, J., Vasiljeva, T. V., Druzhinina, T. V., Kamenchuk, Y. A., Guzeev, V. V., Sokolova, O. S., Bogush, V. G., Debabov, V. G., Kirpichnikov, M. P., and Agapov, I. I. (2012) Tissue regeneration in vivo within recombinant spidroin 1 scaffolds, Biomaterials, 33, 3887–3898.

    Article  CAS  PubMed  Google Scholar 

  23. Panilaitis, B., Altman, G. H., Chen, J., Jin, H. J., Karageorgiou, V., and Kaplan, D. L. (2003) Macrophage responses to silk, Biomaterials, 24, 3079–3085.

    Article  CAS  PubMed  Google Scholar 

  24. Uff, C. R., Scott, A. D., Pockley, A. G., and Phillips, R. K. (1995) Influence of soluble suture factors on in vitro macrophage function, Biomaterials, 16, 355–360.

    Article  CAS  PubMed  Google Scholar 

  25. Cui, X., Wen, J., Zhao, X., Chen, X., Shao, Z., and Jiang, J. J. (2013) A pilot study of macrophage responses to silk fibroin particles, J. Biomed. Mater. Res. A, 101, 1511–1517.

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharjee, M., Schultz-Thater, E., Trella, E., Miot, S., Das, S., Loparic, M., Ray, A. R., Martin, I., Spagnoli, G. C., and Ghosh, S. (2013) The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials, Biomaterials, 34, 8161–8171.

    Article  CAS  PubMed  Google Scholar 

  27. Orlova, A. A., Kotlyarova, M. S., Lavrenov, V. S., Volkova, S. V., and Arkhipova, A. Y. (2014) Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts, Bull. Exp. Biol. Med., 158, 88–91.

    Article  CAS  PubMed  Google Scholar 

  28. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45.

    Article  Google Scholar 

  29. Moisenovich, M. M., Kulikov, D. A., Arkhipova, A. Y., Malyuchenko, N. V., Kotlyarova, M. S., Goncharenko, A. V., Kulikov, A. V., Mashkov, A. E., Agapov, I. I., Paleev, F. N., Svistunov, A. A., and Kirpichnikov, M. P. (2015) Fundamental bases for the use of silk fibroin-based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice, Ter. Arkh., 87, 66–72.

    Article  CAS  PubMed  Google Scholar 

  30. Landen, N. X., Li, D., and Stahle, M. (2016) Transition from inflammation to proliferation: a critical step during wound healing, Cell. Mol. Life Sci., doi: 10.1007/s00018016-2268-0.

  31. Wilson, C. J., Clegg, R. E., Leavesley, D. I., and Pearcy, M. J. (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review, Tissue Eng., 11, 1–18.

    Article  CAS  PubMed  Google Scholar 

  32. Franz, S., Rammelt, S., Scharnweber, D., and Simon, J. C. (2011) Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 32, 6692–6709.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, Z. Q., Kondo, T., Ishida, Y., Takayasu, T., and Mukaida, N. (2003) Essential involvement of IL-6 in the skin woundhealing process as evidenced by delayed wound healing in IL-6-deficient mice, J. Leukoc. Biol., 73, 713–721.

    Article  CAS  PubMed  Google Scholar 

  34. Gallucci, R. M., Simeonova, P. P., Matheson, J. M., Kommineni, C., Guriel, J. L., Sugawara, T., and Luster, M. I. (2000) Impaired cutaneous wound healing in interleukin6-deficient and immunosuppressed mice, FASEB J., 14, 2525–2531.

    Article  CAS  PubMed  Google Scholar 

  35. Nelson, A. M., Reddy, S. K., Ratliff, T. S., Hossain, M. Z., Katseff, A. S., Zhu, A. S., Chang, E., Resnik, S. R., Page, C., Kim, D., Whittam, A. J., Miller, L. S., and Garza, L. A. (2015) dsRNA released by tissue damage activates TLR3 to drive skin regeneration, Cell Stem Cell, 17, 139–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson, A. M., Katseff, A. S., Resnik, S. R., Ratliff, T. S., Zhu, A. S., and Garza, L. A. (2016) Interleukin-6 null mice paradoxically display increased STAT3 activity and woundinduced hair neogenesis, J. Invest. Dermatol., 136, 1051–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thornton, S. C., Por, S. B., Walsh, B. J., Penny, R., and Breit, S. N. (1990) Interaction of immune and connective tissue cells: I. The effect of lymphokines and monokines on fibroblast growth, J. Leukoc. Biol., 47, 312–320.

    CAS  PubMed  Google Scholar 

  38. Mizutani, H., Black, R., and Kupper, T. S. (1991) Human keratinocytes produce but do not process pro-interleukin-1 (IL-1) beta. Different strategies of IL-1 production and processing in monocytes and keratinocytes, J. Clin. Invest., 87, 1066–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, J. D., Lapiere, J. C., Sauder, D. N., Peavey, C., and Woodley, D. T. (1995) Interleukin-1a stimulates keratinocyte migration through an epidermal growth factor/transforming growth factor-a-independent pathway, J. Invest. Dermatol., 104, 729–733.

    Article  CAS  PubMed  Google Scholar 

  40. Mori, R., Kondo, T., Ohshima, T., Ishida, Y., and Mukaida, N. (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration, FASEB J., 16, 963–974.

    Article  CAS  PubMed  Google Scholar 

  41. Hasegawa, M., Higashi, K., Matsushita, T., Hamaguchi, Y., Saito, K., Fujimoto, M., and Takehara, K. (2013) Dermokine inhibits ELR+CXC chemokine expression and delays early skin wound healing, J. Dermatol. Sci., 70, 3441.

    Article  CAS  Google Scholar 

  42. Heise, R., Skazik, C., Marquardt, Y., Czaja, K., Sebastian, K., Kurschat, P., Gan, L., Denecke, B., Ekanayake-Bohlig, S., Wilhelm, K. P., Merk, H. F., and Baron, J. M. (2012) Dexpanthenol modulates gene expression in skin wound healing in vivo, Skin Pharmacol. Physiol., 25, 241–248.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Z., Hodgkinson, T., Gothard, E. J., Boroumand, S., Lamb, R., Cummins, I., Narang, P., Sawtell, A., Coles, J., Leonov, G., Reboldi, A., Buckley, C. D., Cupedo, T., Siebel, C., Bayat, A., Coles, M. C., and Ambler, C. A. (2016) Epidermal Notch1 recruits ROR?+ group 3 innate lymphoid cells to orchestrate normal skin repair, Nat. Commun., 7, 11394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buck, M., Houglum, K., and Chojkier, M. (1996) Tumor necrosis factor-a inhibits collagen a1(I) gene expression and wound healing in a murine model of cachexia, Am. J. Pathol., 149, 195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lai, J. J., Lai, K. P., Chuang, K. H., Chang, P., Yu, I. C., Lin, W. J., and Chang, C. (2009) Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-a expression, J. Clin. Invest., 119, 3739–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Quaglino, D., Nanney, L. B., Ditesheim, J. A., and Davidson, J. M. (1991) Transforming growth factor-ß stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model, J. Invest. Dermatol., 97, 34–42.

    CAS  PubMed  Google Scholar 

  47. Mustoe, T. A., Pierce, G. F., Thomason, A., Gramates, P., Sporn, M. B., and Deuel, T. F. (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor-ß, Science, 237, 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  48. Clark, R. A., Nielsen, L. D., Welch, M. P., and McPherson, J. M. (1995) Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGFß, J. Cell Sci., 108, 1251–1261.

    CAS  PubMed  Google Scholar 

  49. Desmouliere, A., Geinoz, A., Gabbiani, F., and Gabbiani, G. (1993) Transforming growth factor-ß1 induces asmooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts, J. Cell Biol., 122, 103–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Drutskaya.

Additional information

These authors contributed equally to this work.

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 11, pp. 1494–1504.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, A.Y., Nosenko, M.A., Malyuchenko, N.V. et al. Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice. Biochemistry Moscow 81, 1251–1260 (2016). https://doi.org/10.1134/S0006297916110031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916110031

Keywords

Navigation