Skip to main content
Log in

Pentatricopeptide motifs in the N-terminal extension domain of yeast mitochondrial RNA polymerase Rpo41p are not essential for its function

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The core mitochondrial RNA polymerase is a single-subunit enzyme that in yeast Saccharomyces cerevisiae is encoded by the nuclear RPO41 gene. It is an evolutionary descendant of the bacteriophage RNA polymerases, but it includes an additional unconserved N-terminal extension (NTE) domain that is unique to the organellar enzymes. This domain mediates interactions between the polymerase and accessory regulatory factors, such as yeast Sls1p and Nam1p. Previous studies demonstrated that deletion of the entire NTE domain results only in a temperature-dependent respiratory deficiency. Several sequences related to the pentatricopeptide (PPR) motifs were identified in silico in Rpo41p, three of which are located in the NTE domain. PPR repeat proteins are a large family of organellar RNA-binding factors, mostly involved in posttranscriptional gene expression mechanisms. To study their function, we analyzed the phenotype of strains bearing Rpo41p variants where each of these motifs was deleted. We found that deletion of any of the three PPR motifs in the NTE domain does not affect respiratory growth at normal temperature, and it results in a moderate decrease in mtDNA stability. Steady-state levels of COX1 and COX2 mRNAs are also moderately affected. Only the deletion of the second motif results in a partial respiratory deficiency, manifested only at elevated temperature. Our results thus indicate that the PPR motifs do not play an essential role in the function of the NTE domain of the mitochondrial RNA polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mtRNAP:

mitochondrial RNA polymerase

NTE:

N-terminal extension (domain)

ORF:

open reading frame

POLRMT:

human mitochondrial DNA-directed RNA polymerase

PPR:

pentatricopeptide (motif)

References

  1. Gray, M. W., Burger, G., and Lang, B. F. (1999) Mitochondrial evolution, Science, 283, 1476–1481.

    Article  CAS  PubMed  Google Scholar 

  2. Lang, B. F., Gray, M. W., and Burger, G. (1999) Mitochondrial genome evolution and the origin of eukaryotes, Annu. Rev. Genet., 33, 351–397.

    Article  CAS  PubMed  Google Scholar 

  3. Burger, G., Gray, M. W., Forget, L., and Lang, B. F. (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists, Genome Biol. Evol., 5, 418–438.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lang, B. F., Burger, G., O’ Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., and Gray, M. W. (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature, Nature, 387, 493–497.

    Article  CAS  PubMed  Google Scholar 

  5. Shutt, T. E., and Gray, M. W. (2006) Bacteriophage origins of mitochondrial replication and transcription proteins, Trends Genet., 22, 90–95.

    Article  CAS  PubMed  Google Scholar 

  6. Masters, B. S., Stohl, L. L., and Clayton, D. A. (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7, Cell, 51, 89–99.

    Article  CAS  PubMed  Google Scholar 

  7. Jang, S. H., and Jaehning, J. A. (1991) The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial sigma factors, J. Biol. Chem., 266, 22671–22677.

    CAS  PubMed  Google Scholar 

  8. Schubot, F. D., Chen, C. J., Rose, J. P., Dailey, T. A., Dailey, H. A., and Wang, B. C. (2001) Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription, Protein Sci., 10, 1980–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsunaga, M., Jang, S.-H., and Jaehning, J. A. (2004) Expression and purification of wild type and mutant forms of the yeast mitochondrial core RNA polymerase, Rpo41, Protein Express. Purif., 35, 126–130.

    Article  CAS  Google Scholar 

  10. Levens, D., Lustig, A., and Rabinowitz, M. (1981) Purification of mitochondrial RNA polymerase from Saccharomyces cerevisiae, J. Biol. Chem., 256, 1474–1481.

    CAS  PubMed  Google Scholar 

  11. Tracy, R. L., and Stern, D. B. (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases, Curr. Genet., 28, 205–216.

    Article  CAS  PubMed  Google Scholar 

  12. Karlok, M. A., Jang, S.-H., and Jaehning, J. A. (2002) Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization, J. Biol. Chem., 277, 28143–28149.

    CAS  PubMed  Google Scholar 

  13. Matsunaga, M., and Jaehning, J. A. (2004) Intrinsic promoter recognition by a “core” RNA polymerase, J. Biol. Chem., 279, 44239–44242.

    Article  CAS  PubMed  Google Scholar 

  14. Tang, G.-Q., Deshpande, A. P., and Patel, S. S. (2011) Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase, J. Biol. Chem., 286, 38805–38813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paratkar, S., and Patel, S. S. (2010) Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation, J. Biol. Chem., 285, 3949–3956.

    Article  CAS  PubMed  Google Scholar 

  16. Cliften, P., Park, J. Y., Davis, B. P., Jang, S.-H., and Jaehning, J. A. (1997) Identification of three regions essential for interaction between a sigma-like factor and core RNA polymerase, Genes Dev., 11, 2897–2909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangus, D. A., Jang, S. H., and Jaehning, J. A. (1994) Release of the yeast mitochondrial RNA polymerase specificity factor from transcription complexes, J. Biol. Chem., 269, 26568–26574.

    CAS  PubMed  Google Scholar 

  18. Osinga, K. A., and Tabak, H. F. (1982) Initiation of transcription of genes for mitochondrial ribosomal RNA in yeast: comparison of the nucleotide sequence around the 5'-ends of both genes reveals a homologous stretch of 17 nucleotides, Nucleic Acids Res., 10, 3617–3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christianson, T. W., and Rabinowitz, M. (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase, J. Biol. Chem., 258, 14025–14033.

    CAS  PubMed  Google Scholar 

  20. Christianson, T. W., Edwards, J., Levens, D., Locker, J., and Rabinowitz, M. (1982) Transcriptional initiation and processing of the small ribosomal RNA of yeast mitochondria, J. Biol. Chem., 257, 6494–6500.

    CAS  PubMed  Google Scholar 

  21. Turk, E. M., Das, V., Seibert, R. D., and Andrulis, E. D. (2013) The mitochondrial RNA landscape of Saccharomyces cerevisiae, PLoS One, 8, e78105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS Lett., 440, 325–331.

    Article  CAS  PubMed  Google Scholar 

  23. Amiott, E. A., and Jaehning, J. A. (2006) Mitochondrial transcription is regulated via an ATP “sensing” mechanism that couples RNA abundance to respiration, Mol. Cell, 22, 329–338.

    Article  CAS  PubMed  Google Scholar 

  24. Herrmann, J. M., Woellhaf, M. W., and Bonnefoy, N. (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators, Biochim. Biophys. Acta, 1833, 286–294.

    Article  CAS  PubMed  Google Scholar 

  25. Rogowska, A. T., Puchta, O., Czarnecka, A. M., Kaniak, A., Stepien, P. P., and Golik, P. (2006) Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation, Mol. Biol. Cell, 17, 1184–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krause, K., and Dieckmann, C. L. (2004) Analysis of transcription asymmetries along the tRNAE-COB operon: evidence for transcription attenuation and rapid RNA degradation between coding sequences, Nucleic Acids Res., 32, 6276–6283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez-Sandoval, E., Diaz-Quezada, C., Velazquez, G., Arroyo-Navarro, L. F., Almanza-Martinez, N., TrasvinaArenas, C. H., and Brieba, L. G. (2015) Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences, Mitochondrion, 24, 22–31.

    Article  CAS  PubMed  Google Scholar 

  28. Morozov, Y. I., Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P., and Temiakov, D. (2014) A novel intermediate in transcription initiation by human mitochondrial RNA polymerase, Nucleic Acids Res., 42, 3884–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ringel, R., Sologub, M., Morozov, Y. I., Litonin, D., Cramer, P., and Temiakov, D. (2011) Structure of human mitochondrial RNA polymerase, Nature, 478, 269–273.

    Article  CAS  PubMed  Google Scholar 

  30. Schwinghammer, K., Cheung, A. C. M., Morozov, Y. I., Agaronyan, K., Temiakov, D., and Cramer, P. (2013) Structure of human mitochondrial RNA polymerase elongation complex, Nat. Struct. Mol. Biol., 20, 1298–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nayak, D., Guo, Q., and Sousa, R. (2009) A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases, J. Biol. Chem., 284, 13641–13647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X., Chang, H. R., and Yin, Y. W. (2015) Yeast mitochondrial transcription factor Mtf1 determines the precision of promoter-directed initiation of RNA polymerase Rpo41, PLoS One, 10, e0136879.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y., and Shadel, G. S. (1999) Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase, Proc. Natl. Acad. Sci. USA, 96, 8046–8051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodeheffer, M. S., Boone, B. E., Bryan, A. C., and Shadel, G. S. (2001) Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase, J. Biol. Chem., 276, 8616–8622.

    Article  CAS  PubMed  Google Scholar 

  35. Lipinski, K. A., Puchta, O., Surendranath, V., Kudla, M., and Golik, P. (2011) Revisiting the yeast PPR proteins–application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family, Mol. Biol. Evol., 28, 2935–2948.

    Article  CAS  PubMed  Google Scholar 

  36. Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2013) Human pentatricopeptide proteins, RNA Biol., 10, 1433–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Filipovska, A., and Rackham, O. (2013) Pentatricopeptide repeats, RNA Biol., 10, 1426–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giege, P. (2013) Pentatricopeptide repeat proteins, RNA Biol., 10, 1417–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herbert, C. J., Golik, P., and Bonnefoy, N. (2013) Yeast PPR proteins, watchdogs of mitochondrial gene expression, RNA Biol., 10, 1477–1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmitz-Linneweber, C., and Sluyter, F. (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression, Trends Plant Sci., 13, 663–670.

    Article  CAS  PubMed  Google Scholar 

  41. Delannoy, E., Stanley, W. A., Bond, C. S., and Sluyter, F. (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles, Biochem. Soc. Trans., 35, 1643–1647.

    Article  CAS  PubMed  Google Scholar 

  42. Small, I. D., and Peeters, N. (2000) The PPR motif–a TPR-related motif prevalent in plant organellar proteins, Trends Biochem. Sci., 25, 46–47.

    Article  CAS  PubMed  Google Scholar 

  43. Kuhl, I., Dujeancourt, L., Gaisne, M., Herbert, C. J., and Bonnefoy, N. (2011) A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression, Nucleic Acids Res., 39, 8029–8041.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rodeheffer, M. S., and Shadel, G. S. (2003) Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis, J. Biol. Chem., 278, 18695–18701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryan, A. C., Rodeheffer, M. S., Wearn, C. M., and Shadel, G. S. (2002) Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression, Genetics, 160, 75–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Paratkar, S., Deshpande, A. P., Tang, G.-Q., and Patel, S. S. (2011) The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription, J. Biol. Chem., 286, 16109–16120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaliszewska, M., Kruszewski, J., Kierdaszuk, B., KosteraPruszczyk, A., Nojszewska, M., Lusakowska, A., Vizueta, J., Sabat, D., Lutyk, D., Lower, M., PiekutowskaAbramczuk, D., Kaniak-Golik, A., Pronicka, E., Kaminska, A., Bartnik, E., Golik, P., and Tonska, K. (2015) Yeast model analysis of novel polymerase gamma variants found in patients with autosomal recessive mitochondrial disease, Hum. Genet., 134, 951–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burke, D., Dawson, D., and Stearns, T. (2000) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual.

    Google Scholar 

  49. Dujardin, G., Pajot, P., Groudinsky, O., and Slonimski, P. P. (1980) Long-range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors, Mol. Gen. Genet., 179, 469–482.

    Article  CAS  PubMed  Google Scholar 

  50. Gietz, R. D., and Woods, R. A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/ polyethylene glycol method, Methods Enzymol., 350, 87–96.

    Article  CAS  PubMed  Google Scholar 

  51. Cliften, P., Jang, S.-H., and Jaehning, J. A. (2000) Identifying a core RNA polymerase surface critical for interactions with a sigma-like specificity factor, Mol. Cell. Biol., 20, 7013–7023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiu, J., March, P. E., Lee, R., and Tillett, D. (2004) Sitedirected, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h, Nucleic Acids Res., 32, e174.

    PubMed  Google Scholar 

  53. Chiron, S., Suleau, A., and Bonnefoy, N. (2005) Mitochondrial translation: elongation factor Tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast, Genetics, 169, 1891–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saint-Georges, Y., Bonnefoy, N., Di Rago, J. P., Chiron, S., and Dujardin, G. (2002) A pathogenic cytochrome b mutation reveals new interactions between subunits of the mitochondrial bc1 complex, J. Biol. Chem., 277, 49397–49402.

    Article  CAS  PubMed  Google Scholar 

  55. Sikorski, R. S., and Boeke, J. D. (1991) In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast, Methods Enzymol., 194, 302–318.

    Article  CAS  PubMed  Google Scholar 

  56. Groudinsky, O., Dujardin, G., and Slonimski, P. P. (1981) Long-range control circuits within mitochondria and between nucleus and mitochondria. II. Genetic and biochemical analyses of suppressors which selectively alleviate the mitochondrial intron mutations, Mol. Gen. Genet., 184, 493–503.

    Article  CAS  PubMed  Google Scholar 

  57. Ogur, M., St. John, R., and Nagai, S. (1957) Tetrazolium overlay technique for population studies of respiration deficiency in yeast, Science, 125, 928–929.

    Article  CAS  PubMed  Google Scholar 

  58. Malecki, M., Jedrzejczak, R., Puchta, O., Stepien, P. P., and Golik, P. (2008) In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex, Methods Enzymol., 447, 463–488.

    Article  CAS  PubMed  Google Scholar 

  59. Tomecki, R., Dmochowska, A., Gewartowski, K., Dziembowski, A., and Stepien, P. P. (2004) Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase, Nucleic Acids Res., 32, 6001–6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kolondra, A., Labedzka-Dmoch, K., Wenda, J. M., Drzewicka, K., and Golik, P. (2015) The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts, BMC Genomics, 16, 1.

    Article  Google Scholar 

  61. Szczepanek, T., and Lazowska, J. (1996) Replacement of two non-adjacent amino acids in the S. cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity, EMBO J., 15, 3758–3767.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mulero, J. J., and Fox, T. D. (1993) Alteration of the Saccharomyces cerevisiae COX2 mRNA 5'-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111, Mol. Biol. Cell, 4, 1327–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greenleaf, A. L., Kelly, J. L., and Lehman, I. R. (1986) Yeast RPO41 gene product is required for transcription and maintenance of the mitochondrial genome, Proc. Natl. Acad. Sci. USA, 83, 3391–3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmidt, U., Maue, I., Lehmann, K., Belcher, S. M., Stahl, U., and Perlman, P. S. (1998) Mutant alleles of the MRS2 gene of yeast nuclear DNA suppress mutations in the catalytic core of a mitochondrial group II intron, J. Mol. Biol., 282, 525–541.

    Article  CAS  PubMed  Google Scholar 

  65. Manthey, G. M., Przybyla-Zawislak, B. D., and McEwen, J. E. (1998) The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane, Eur. J. Biochem., 255, 156–161.

    Article  CAS  PubMed  Google Scholar 

  66. Wallis, M. G., Groudinsky, O., Slonimski, P. P., and Dujardin, G. (1994) The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilization, is located in the yeast mitochondrial matrix, Eur. J. Biochem., 222, 27–32.

    Article  CAS  PubMed  Google Scholar 

  67. Main, E. R. G., Lowe, A. R., Mochrie, S. G. J., Jackson, S. E., and Regan, L. (2005) A recurring theme in protein engineering: the design, stability and folding of repeat proteins, Curr. Opin. Struct. Biol., 15, 464–471.

    Article  CAS  PubMed  Google Scholar 

  68. Kobe, B., and Kajava, A. V. (2000) When protein folding is simplified to protein coiling: the continuum of solenoid protein structures, Trends Biochem. Sci., 25, 509–515.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Golik.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1371–1382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruszewski, J., Golik, P. Pentatricopeptide motifs in the N-terminal extension domain of yeast mitochondrial RNA polymerase Rpo41p are not essential for its function. Biochemistry Moscow 81, 1101–1110 (2016). https://doi.org/10.1134/S0006297916100084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100084

Key words

Navigation