Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 6, pp 591–599 | Cite as

CELSR1 is a positive regulator of endothelial cell migration and angiogenesis

  • Yi-Hong Zhan
  • Qi-Cong Luo
  • Xiao-Rong Zhang
  • Nai-An Xiao
  • Cong-Xia Lu
  • Cen Yue
  • Ning Wang
  • Qi-Lin MaEmail author
Article
  • 76 Downloads

Abstract

Cadherin is an epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a key component of the noncanonical Wnt/planar cell polarity (PCP) pathway that critically regulates endothelial cell proliferation and angiogenesis. In this study, we examined the biological significance of CELSR1 in endothelial cell migration and angiogenesis. For this, we applied both gain-of-function and loss-of-function approaches. To increase the endogenous expression of CELSR1, we used the transcription activator-like effector (TALE) technology and constructed an artificial TALE-VP64 activator. To knock down the expression of CELSR1, we generated lentivirus containing short hairpin RNA sequences targeting different regions of CELSR1 mRNA. Following up- or down-regulation of CELSR1 in human aortic endothelial cells (HAEC), we assessed in vitro cell proliferation by MTT assay, migration by scratch and transwell migration assays, and angiogenesis by tube formation analysis. We found that CELSR1 was endogenously expressed in human umbilical vein endothelial cells (HUVEC) and HAEC. When focusing on HAEC, we found that upregulating CELSR1 expression significantly promoted cell growth, while knocking down CELSR1 inhibited the growth (p < 0.05). Using both scratch and transwell migration assays, we observed a positive correlation between CELSR1 expression and cell migratory capability. In addition, CELSR1 upregulation led to higher levels of tube formation in HAEC, while downregulating CELSR1 expression decreased tube formation (p < 0.05). Mechanistically, CELSR1-regulated migration and tube formation was mediated through disheveled segment polarity protein 3 (Dvl3). In conclusion, CELSR1 plays an important role in regulating multiple phenotypes of endothelial cells, including proliferation, migration, and formation of capillary-like structures.

Key words

CELSR1 endothelial cells migration angiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Formstone, C. J., Moxon, C., Murdoch, J., Little, P., and Mason, I. (2010) Basal enrichment within neuroepithelia suggests novel function(s) for CELSR1 protein, Mol. Cell. Neurosci., 44, 210–222.CrossRefPubMedGoogle Scholar
  2. 2.
    Crompton, L. A., Du Roure, C., and Rodriguez, T. A. (2007) Early embryonic expression patterns of the mouse Flamingo and Prickle orthologues, Dev. Dyn., 236, 3137–3143.CrossRefPubMedGoogle Scholar
  3. 3.
    Yates, L. L., Schnatwinkel, C., Murdoch, J. N., Bogani, D., Formstone, C. J., Townsend, S., Greenfield, A., Niswander, L. A., and Dean, C. H. (2010) The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis, Hum. Mol. Genet., 19, 2251–2267.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cirone, P., Lin, S., Griesbach, H. L., Zhang, Y., Slusarski, D. C., and Crews, C. M. (2008) A role for planar cell polarity signaling in angiogenesis, Angiogenesis, 11, 347–360.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Descamps, B., Sewduth, R., Ferreira Tojais, N., Jaspard, B., Reynaud, A., Sohet, F., Lacolley, P., Allieres, C., Lamaziere, J. M., Moreau, C., Dufourcq, P., Couffinhal, T., and Duplaa, C. (2012) Frizzled 4 regulates arterial network organization through noncanonical Wnt/planar cell polarity signaling, Circ. Res., 110, 47–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Ju, R., Cirone, P., Lin, S., Griesbach, H., Slusarski, D. C., and Crews, C. M. (2010) Activation of the planar cell polarity formin DAAM1 leads to inhibition of endothelial cell proliferation, migration, and angiogenesis, Proc. Natl. Acad. Sci. USA, 107, 6906–6911.CrossRefGoogle Scholar
  7. 7.
    Masckauchan, T. N., Agalliu, D., Vorontchikhina, M., Ahn, A., Parmalee, N. L., Li, C. M., Khoo, A., Tycko, B., Brown, A. M., and Kitajewski, J. (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2, Mol. Biol. Cell, 17, 5163–5172.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yamada, Y., Fuku, N., Tanaka, M., Aoyagi, Y., Sawabe, M., Metoki, N., Yoshida, H., Satoh, K., Kato, K., Watanabe, S., Nozawa, Y., Hasegawa, A., and Kojima, T. (2009) Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genomewide association study, Atherosclerosis, 207, 144–149.CrossRefPubMedGoogle Scholar
  9. 9.
    Gouveia, L. O., Sobral, J., Vicente, A. M., Ferro, J. M., and Oliveira, S. A. (2011) Replication of the CELSR1 association with ischemic stroke in a Portuguese case-control cohort, Atherosclerosis, 217, 260–262.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhan, Y. H., Lin, Y., Tong, S. J., Ma, Q. L., Lu, C. X., Fang, L., Wei, W., Cai, B., and Wang, N. (2015) The CELSR1 polymorphisms rs6007897 and rs4044210 are associated with ischaemic stroke in Chinese Han population, Ann. Hum. Biol., 42, 26–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Curtin, J. A., Quint, E., Tsipouri, V., Arkell, R. M., Cattanach, B., Copp, A. J., Henderson, D. J., Spurr, N., Stanier, P., Fisher, E. M., Nolan, P. M., Steel, K. P., Brown, S. D., Gray, I. C., and Murdoch, J. N. (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse, Curr. Biol., 13, 1129–1133.CrossRefPubMedGoogle Scholar
  12. 12.
    Devenport, D., Oristian, D., Heller, E., and Fuchs, E. (2011) Mitotic internalization of planar cell polarity proteins preserves tissue polarity, Nat. Cell Biol., 13, 893–902.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tatin, F., Taddei, A., Weston, A., Fuchs, E., Devenport, D., Tissir, F., and Makinen, T. (2013) Planar cell polarity protein CELSR1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis, Dev. Cell, 26, 31–44.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maeder, M. L., Linder, S. J., Reyon, D., Angstman, J. F., Fu, Y., Sander, J. D., and Joung, J. K. (2013) Robust, synergistic regulation of human gene expression using TALE activators, Nat. Methods, 10, 243–245.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(–C(T)), Methods, 25, 402–408.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Meerloo, J., Kaspers, G. J., and Cloos, J. (2011) Cell sensitivity assays: the MTT assay, Methods Mol. Biol., 731, 237–245.CrossRefPubMedGoogle Scholar
  17. 17.
    Justus, C. R., Leffler, N., Ruiz-Echevarria, M., and Yang, L. V. (2014) In vitro cell migration and invasion assays, J. Vis. Exp., 88, doi: 10.3791/51046.Google Scholar
  18. 18.
    Goodrich, L. V., and Strutt, D. (2011) Principles of planar polarity in animal development, Development, 138, 18771892.CrossRefGoogle Scholar
  19. 19.
    Gray, R. S., Roszko, I., and Solnica-Krezel, L. (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity, Dev. Cell, 21, 120–133.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Seifert, J. R., and Mlodzik, M. (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility, Nat. Rev. Genet., 8, 126–138.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, P. L., and Clandinin, T. R. (2008) The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila, Neuron, 58, 2633.Google Scholar
  22. 22.
    Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L., Takeichi, M., and Uemura, T. (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled, Cell, 98, 585–595.CrossRefPubMedGoogle Scholar
  23. 23.
    Joung, J. K., and Sander, J. D. (2013) TALENs: a widely applicable technology for targeted genome editing, Nat. Rev. Mol. Cell Biol., 14, 49–55.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yi-Hong Zhan
    • 1
    • 2
  • Qi-Cong Luo
    • 3
  • Xiao-Rong Zhang
    • 2
  • Nai-An Xiao
    • 1
  • Cong-Xia Lu
    • 1
  • Cen Yue
    • 1
  • Ning Wang
    • 4
  • Qi-Lin Ma
    • 1
    Email author
  1. 1.Department of NeurologyThe First Affiliated Hospital of Xiamen UniversityXiamenChina
  2. 2.Center of Neuroscience, The First Affiliated Hospital, The First Clinical Medical CollegeFujian Medical UniversityFuzhouChina
  3. 3.The First Affiliated Hospital of Xiamen University, Center for LaboratoryXiamenChina
  4. 4.Fujian Medical University, Center of Neuroscience, The First Affiliated Hospital, Department of Neurology and Institute of NeurologyFuzhouChina

Personalised recommendations