Skip to main content
Log in

A role for planar cell polarity signaling in angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The planar cell polarity (PCP) pathway is a highly conserved signaling cascade that coordinates both epithelial and axonal morphogenic movements during development. Angiogenesis also involves the growth and migration of polarized cells, although the mechanisms underlying their intercellular communication are poorly understood. Here, using cell culture assays, we demonstrate that inhibition of PCP signaling disrupts endothelial cell growth, polarity, and migration, all of which can be rescued through downstream activation of this pathway by expression of either Daam-1, Diversin or Inversin. Silencing of either Dvl2 or Prickle suppressed endothelial cell proliferation. Moreover, loss of p53 rescues endothelial cell growth arrest but not the migration inhibition caused by PCP disruption. In addition, we show that the zebrafish Wnt5 mutant (pipetail (ppt)), which has impaired PCP signaling, displays vascular developmental defects. These findings reveal a potential role for PCP signaling in the coordinated assembly of endothelial cells into vascular structures and have important implications for vascular remodeling in development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Dvl:

Dishevelled

PCP:

Planar cell polarity

NHDF:

Normal human dermal fibroblasts

MPE:

Murine pulmonary endothelial

GFP:

Green fluorescent protein

MetAP-2:

Methionine aminopeptidase 2

IS:

Intersegmental

MO:

Morpholino

References

  1. Liebner S, Cavallaro U, Dejana E (2006) The multiple languages of endothelial cell-to-cell communication. Arterioscler Thromb Vasc Biol 26:1431–1438. doi:10.1161/01.ATV.0000218510.04541.5e

    Article  PubMed  CAS  Google Scholar 

  2. Fanto M, McNeill H (2004) Planar polarity from flies to vertebrates. J Cell Sci 117:527–533. doi:10.1242/jcs.00973

    Article  PubMed  CAS  Google Scholar 

  3. Gong Y, Mo C, Fraser SE (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430:689–693. doi:10.1038/nature02796

    Article  PubMed  CAS  Google Scholar 

  4. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R et al (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81. doi:10.1038/35011068

    Article  PubMed  CAS  Google Scholar 

  5. Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18:447–455. doi:10.1016/S0168-9525(02)02725-7

    Article  PubMed  CAS  Google Scholar 

  6. Wallingford JB, Vogeli KM, Harland RM (2001) Regulation of convergent extension in Xenopus by Wnt5a and Frizzled-8 is independent of the canonical Wnt pathway. Int J Dev Biol 45:225–227

    PubMed  CAS  Google Scholar 

  7. Arevalo JC, Chao MV (2005) Axonal growth: where neurotrophins meet Wnts. Curr Opin Cell Biol 17:112–115. doi:10.1016/j.ceb.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  8. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42. doi:10.1038/nn1374

    Article  PubMed  CAS  Google Scholar 

  9. Malbon CC, Wang HY (2006) Dishevelled: a mobile scaffold catalyzing development. Curr Top Dev Biol 72:153–166. doi:10.1016/S0070-2153(05)72002-0

    Article  PubMed  CAS  Google Scholar 

  10. Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854. doi:10.1016/S0092-8674(01)00614-6

    Article  PubMed  CAS  Google Scholar 

  11. Marlow F, Topczewski J, Sepich D, Solnica-Krezel L (2002) Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12:876–884. doi:10.1016/S0960-9822(02)00864-3

    Article  PubMed  CAS  Google Scholar 

  12. Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R et al (2002) JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep 3:69–75. doi:10.1093/embo-reports/kvf008

    Article  PubMed  CAS  Google Scholar 

  13. Wright M, Aikawa M, Szeto W, Papkoff J (1999) Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 263:384–388. doi:10.1006/bbrc.1999.1344

    Article  PubMed  CAS  Google Scholar 

  14. Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM et al (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163–5172. doi:10.1091/mbc.E06-04-0320

    Article  PubMed  CAS  Google Scholar 

  15. Cheng CW, Yeh JC, Fan TP, Smith SK, Charnock-Jones DS (2008) Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun 365:285–290

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Yeh JR, Mara A, Ju R, Hines JF, Cirone P et al (2006) A chemical and genetic approach to the mode of action of fumagillin. Chem Biol 13:1001–1009. doi:10.1016/j.chembiol.2006.07.010

    Article  PubMed  CAS  Google Scholar 

  17. Yeh JR, Ju R, Brdlik CM, Zhang W, Zhang Y, Matyskiela ME et al (2006) Targeted gene disruption of methionine aminopeptidase 2 results in an embryonic gastrulation defect and endothelial cell growth arrest. Proc Natl Acad Sci USA 103:10379–10384. doi:10.1073/pnas.0511313103

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y, Neo SY, Han J, Lin SC (2000) Dimerization choices control the ability of axin and dishevelled to activate c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 275:25008–25014. doi:10.1074/jbc.M002491200

    Article  PubMed  CAS  Google Scholar 

  19. Yeh JR, Mohan R, Crews CM (2000) The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proc Natl Acad Sci USA 97:12782–12787. doi:10.1073/pnas.97.23.12782

    Article  PubMed  CAS  Google Scholar 

  20. Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J (2005) Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 280:3541–3547. doi:10.1074/jbc.M409040200

    Article  PubMed  CAS  Google Scholar 

  21. Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775

    PubMed  Google Scholar 

  22. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J et al (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275:10661–10672. doi:10.1074/jbc.275.14.10661

    Article  PubMed  CAS  Google Scholar 

  23. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R et al (1999) Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18:4414–4423. doi:10.1093/emboj/18.16.4414

    Article  PubMed  CAS  Google Scholar 

  24. Nicosia RF, Ottinetti A (1990) Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128. doi:10.1007/BF02624102

    Article  PubMed  CAS  Google Scholar 

  25. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL et al (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9:1149–1159. doi:10.1016/S1074-5521(02)00248-X

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida A, Anand-Apte B, Zetter BR (1996) Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64. doi:10.3109/08977199609034566

    Article  PubMed  CAS  Google Scholar 

  27. Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM et al (2007) Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 177:683–694. doi:10.1083/jcb.200701006

    Article  PubMed  CAS  Google Scholar 

  28. Parat MO, Anand-Apte B, Fox PL (2003) Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 14:3156–3168. doi:10.1091/mbc.E02-11-0761

    Article  PubMed  CAS  Google Scholar 

  29. Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT (2003) Dishevelled activates Ca2+flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161:769–777. doi:10.1083/jcb.200211094

    Article  PubMed  CAS  Google Scholar 

  30. Boutros M, Paricio N, Strutt DI, Mlodzik M (1998) Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94:109–118. doi:10.1016/S0092-8674(00)81226-X

    Article  PubMed  CAS  Google Scholar 

  31. Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  32. Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D et al (1991) Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem Biophys Res Commun 174:1070–1076. doi:10.1016/0006-291X(91)91529-L

    Article  PubMed  CAS  Google Scholar 

  33. Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A (1999) DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 19:4414–4422

    PubMed  CAS  Google Scholar 

  34. Li L, Yuan H, Xie W, Mao J, Caruso AM, McMahon A et al (1999) Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem 274:129–134. doi:10.1074/jbc.274.1.129

    Article  PubMed  CAS  Google Scholar 

  35. Moriguchi T, Kawachi K, Kamakura S, Masuyama N, Yamanaka H, Matsumoto K et al (1999) Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J Biol Chem 274:30957–30962. doi:10.1074/jbc.274.43.30957

    Article  PubMed  CAS  Google Scholar 

  36. Park TJ, Gray RS, Sato A, Habas R, Wallingford JB (2005) Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr Biol 15:1039–1044. doi:10.1016/j.cub.2005.04.062

    Article  PubMed  CAS  Google Scholar 

  37. Pan WJ, Pang SZ, Huang T, Guo HY, Wu D, Li L (2004) Characterization of function of three domains in dishevelled-1: DEP domain is responsible for membrane translocation of dishevelled-1. Cell Res 14:324–330. doi:10.1038/sj.cr.7290232

    Article  PubMed  CAS  Google Scholar 

  38. Farinelle S, Malonne H, Chaboteaux C, Decaestecker C, Dedecker R, Gras T et al (2000) Characterization of TNP-470-induced modifications to cell functions in HUVEC and cancer cells. J Pharmacol Toxicol Methods 43:15–24. doi:10.1016/S1056-8719(00)00080-0

    Article  PubMed  CAS  Google Scholar 

  39. Schwarz-Romond T, Asbrand C, Bakkers J, Kuhl M, Schaeffer HJ, Huelsken J et al (2002) The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev 16:2073–2084. doi:10.1101/gad.230402

    Article  PubMed  CAS  Google Scholar 

  40. Tissir F, Bar I, Goffinet AM, Lambert De Rouvroit C (2002) Expression of the ankyrin repeat domain 6 gene (Ankrd6) during mouse brain development. Dev Dyn 224:465–469. doi:10.1002/dvdy.10126

    Article  PubMed  CAS  Google Scholar 

  41. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C et al (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543. doi:10.1038/ng1552

    Article  PubMed  CAS  Google Scholar 

  42. Moeller H, Jenny A, Schaeffer HJ, Schwarz-Romond T, Mlodzik M, Hammerschmidt M et al (2006) Diversin regulates heart formation and gastrulation movements in development. Proc Natl Acad Sci USA 103:15900–15905. doi:10.1073/pnas.0603808103

    Article  PubMed  CAS  Google Scholar 

  43. De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R (2005) Essential role of non-canonical Wnt signalling in neural crest migration. Development 132:2587–2597. doi:10.1242/dev.01857

    Article  PubMed  CAS  Google Scholar 

  44. Park M, Moon RT (2002) The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4:20–25. doi:10.1038/ncb716

    Article  PubMed  CAS  Google Scholar 

  45. Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309. doi:10.1101/gad.1022203

    Article  PubMed  CAS  Google Scholar 

  46. Kilian B, Mansukoski H, Barbosa FC, Ulrich F, Tada M, Heisenberg CP (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120:467–476. doi:10.1016/S0925-4773(03)00004-2

    Article  PubMed  CAS  Google Scholar 

  47. Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119:97–111

    PubMed  CAS  Google Scholar 

  48. Liao G, Tao Q, Kofron M, Chen JS, Schloemer A, Davis RJ et al (2006) Jun NH2-terminal kinase (JNK) prevents nuclear {beta}-catenin accumulation and regulates axis formation in Xenopus embryos. Proc Natl Acad Sci USA 103:16313–16318. doi:10.1073/pnas.0602557103

    Article  PubMed  CAS  Google Scholar 

  49. Kragh M, Hjarnaa PJ, Bramm E, Binderup L (2004) A versatile in vivo chamber angiogenesis assay for measuring anti-angiogenic activity in mice. Oncol Rep 11:303–307

    PubMed  CAS  Google Scholar 

  50. Goto T, Davidson L, Asashima M, Keller R (2005) Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr Biol 15:787–793. doi:10.1016/j.cub.2005.03.040

    Article  PubMed  CAS  Google Scholar 

  51. Na J, Lykke-Andersen K, Torres Padilla ME, Zernicka-Goetz M (2007) Dishevelled proteins regulate cell adhesion in mouse blastocyst and serve to monitor changes in Wnt signaling. Dev Biol 302:40–49. doi:10.1016/j.ydbio.2006.08.036

    Article  PubMed  CAS  Google Scholar 

  52. Witzel S, Zimyanin V, Carreira-Barbosa F, Tada M, Heisenberg CP (2006) Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 175:791–802. doi:10.1083/jcb.200606017

    Article  PubMed  CAS  Google Scholar 

  53. Keller R, Shih J, Sater AK, Moreno C (1992) Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn 193:218–234

    PubMed  CAS  Google Scholar 

  54. Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z et al (2002) Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129:5827–5838. doi:10.1242/dev.00164

    Article  PubMed  CAS  Google Scholar 

  55. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318. doi:10.1006/dbio.2002.0711

    Article  PubMed  CAS  Google Scholar 

  56. Rauch GJ, Hammerschmidt M, Blader P, Schauerte HE, Strahle U, Ingham PW et al (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62:227–234

    PubMed  CAS  Google Scholar 

  57. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301. doi:10.1006/dbio.2000.9995

    Article  PubMed  CAS  Google Scholar 

  58. Shaw KM, Castranova DA, Pham VN, Kamei M, Kidd KR, Lo BD et al (2006) Fused-somites-like mutants exhibit defects in trunk vessel patterning. Dev Dyn 235:1753–1760. doi:10.1002/dvdy.20814

    Article  PubMed  Google Scholar 

  59. Blankesteijn WM, van Gijn ME, Essers-Janssen YP, Daemen MJ, Smits JF (2000) Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol 157:877–883

    PubMed  CAS  Google Scholar 

  60. Goodwin AM, D’Amore PA (2002) Wnt signaling in the vasculature. Angiogenesis 5:1–9. doi:10.1023/A:1021563510866

    Article  PubMed  CAS  Google Scholar 

  61. Goodwin AM, Sullivan KM, D’Amore PA (2006) Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 235:3110–3120. doi:10.1002/dvdy.20939

    Article  PubMed  CAS  Google Scholar 

  62. Hanai J, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G et al (2002) Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 158:529–539. doi:10.1083/jcb.200203064

    Article  PubMed  CAS  Google Scholar 

  63. Masckauchan TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J (2005) Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8:43–51. doi:10.1007/s10456-005-5612-9

    Article  PubMed  CAS  Google Scholar 

  64. Yano H, Hara A, Takenaka K, Nakatani K, Shinoda J, Shimokawa K et al (2000) Differential expression of beta-catenin in human glioblastoma multiforme and normal brain tissue. Neurol Res 22:650–656

    PubMed  CAS  Google Scholar 

  65. Ishikawa T, Tamai Y, Zorn AM, Yoshida H, Seldin MF, Nishikawa S et al (2001) Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128:25–33

    PubMed  CAS  Google Scholar 

  66. Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP et al (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133. doi:10.1016/j.ydbio.2007.03.011

    Article  PubMed  CAS  Google Scholar 

  67. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    PubMed  CAS  Google Scholar 

  68. Huang S, Chen CS, Ingber DE (1998) Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 9:3179–3193

    PubMed  CAS  Google Scholar 

  69. Mammoto A, Huang S, Moore K, Oh P, Ingber DE (2004) Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2–p27kip1 pathway and the G1/S transition. J Biol Chem 279:26323–26330. doi:10.1074/jbc.M402725200

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Y, Griffith EC, Sage J, Jacks T, Liu JO (2000) Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci USA 97:6427–6432. doi:10.1073/pnas.97.12.6427

    Article  PubMed  CAS  Google Scholar 

  71. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29. doi:10.1016/S1350-9462(02)00043-5

    Article  PubMed  CAS  Google Scholar 

  72. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936. doi:10.1038/nature04478

    Article  PubMed  CAS  Google Scholar 

  73. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974. doi:10.1038/nature04483

    Article  PubMed  CAS  Google Scholar 

  74. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18. doi:10.1146/annurev.med.57.121304.131306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank John Hines for his critical review of the manuscript. This work was supported by grants from the NIH (CA083049 to CMC and CA112369 to DCS). PC is the recipient of the Leukemia and Lymphoma Society Fellowship. The authors have declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Crews.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2008_9116_MOESM1_ESM.doc

Supplemental Fig S1 Localization of the MOTC in TNP-470-treated Endothelial Cells. In vehicle-treated migrating cells the MOTC was localized at the lamellipodial side (L) of the cell’s nucleus, as opposed to the trailing end (T). After cells are treated with TNP-470, they were predominantly rounded and not actively migrating with the MOTC unperturbed and on a random side of the nucleus. MOTC was identified using γ-tubulin,Cy3-conjugated antibody as per the manufacture’s instructions for immunohistochemistry (ab11319, Abcam) (DOC 1703 kb)

10456_2008_9116_MOESM2_ESM.doc

Supplemental Fig S2 Knockdown of Dvl2 or Prickle Suppresses Endothelial Cell Proliferation. (Upper) Validation of shRNA constructs for Dvl2 (duplex: 5′-CTTTGAGAACATGAGCAA-3′) and prickle (duplex: 5′-AATTTATGCGCCAGCGGAGCT-3′). Mock controls are pSUPER-retro-puro infections. Multiple bands are observed for FLAG-tagged prickle constructs, which are consistently knocked down with the introduction of prickle shRNA. (Lower) Tritiated thymidine incorporation assays were performed on HUVEC cells with shRNA-mediated suppressed Dvl2 or prickle expression. Knockdown of either PCP mediator suppressed endothelial cell proliferation (DOC 265 kb)

10456_2008_9116_MOESM3_ESM.doc

Supplemental Fig S3 Knockdown of Dvl2 on Endothelial Cell Migration and Coordination on Matrigel. A) Silencing of Dvl2 did not suppress migration of endothelial cells although the silencing did rescue from inhibition by TNP-470. (*: p < 0.05, n = 5 random fields of view x4 wells/group and duplicate experiments). HUVECs were visualized by use of Calcein AM (Molecular Probes). (B) Although silencing of Dvl2 could produce noticeable breaks within the cellular extensions observed in Matrigel, the quantification of intact cellular extensions was not statistically meaningful. However, like for the migration assay, the knockdown of Dvl2 did serve to protect endothelial cells from the inhibitory effects of TNP-470. (*: p < 0.05, n =4 per group, performed in duplicate experiments) (DOC 366 kb)

10456_2008_9116_MOESM4_ESM.doc

Supplemental Fig S4 Transplants of Wnt5-MO injected Cells Disrupts Angiogenesis in Zebrafish. Cells injected with Wnt5-MO co-mixed with lineage marker were grafted from donor embryos into the blastodermal margin of host fli-EGFP embryos at sphere stage. Host embryos were examined with fluorescence stereomicroscopy at 24hpf and embryos with transplanted cells (as detected by lineage marker) incorporated into the somite region were fixed and subjected to confocal imaging. Regions of red indicate areas of Wnt5 depletion, green identifies the vasculature (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirone, P., Lin, S., Griesbach, H.L. et al. A role for planar cell polarity signaling in angiogenesis. Angiogenesis 11, 347–360 (2008). https://doi.org/10.1007/s10456-008-9116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9116-2

Keywords

Navigation