Skip to main content
Log in

Knockdown of ezrin suppresses the migration and angiogenesis of human umbilical vein endothelial cells in vitro

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Progressive tumor growth is dependent on angiogenesis. The mechanisms by which endothelial cells (ECs) are incorporated to develop new blood vessels are not well understood. Recent studies reveal that the ezrin radixin moesin (ERM) family members are key regulators of cellular activities such as adhesion, morphogenetic change, and migration. We hypothesized that ezrin, one of the ERM family members, may play important roles in ECs organization during angiogenesis, and new vessels formation in preexisting tissues. To test this hypothesis, in this study, we investigated the effects of ezrin gene silencing on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs were transfected with plasmids with ezrin-targeting short hairpin RNA by using the lipofectamine-2000 system. Wound assay in vitro and three-dimensional culture were used to detect the migration and angiogenesis capacity of HUVECs. The morphological changes of transfected cells were observed by confocal and phase contrast microscopy. Our results demonstrated that the decreased expression of ezrin in HUVECs significantly induced the morphogenetic changes and cytoskeletal reorganization of the transfected cells, and also reduced cell migration and angiogenesis capacity in vitro, suggesting that ezrin play an important role in the process of HUVECs migration and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Y, Huang J, Yang Z. The roles of ADAMTS in angiogenesis and cancer. Tumour Biol, 2015,28(6):1–13

    Google Scholar 

  2. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996,86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  3. Kusumanto YH, Dam WA, Hospers GA, et al. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis, 2003,6(4):283–287

    Article  CAS  PubMed  Google Scholar 

  4. Orr FW, Wang HW, Lafrenie RM, et al. Interactions between cancer cells and the endothelium in metastasis. J Pathol, 2000,190(3):310–329

    Article  CAS  PubMed  Google Scholar 

  5. Davis GE, Mavila A, Bayless K. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec, 2002,268(3):252–275

    Article  CAS  PubMed  Google Scholar 

  6. Mentzer SJ, Konerding MA. Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis, 2014,17(3):499–509

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonilha VL. Focus on molecules: Ezrin. Exp Eye Res, 2007,84(4):613–614

    Article  CAS  PubMed  Google Scholar 

  8. Daria B, Stefano F. The Janus-faced role of ezrin in “linking” cells to either normal or metastatic phenotype. Int J Cancer, 2009,125(10):2239–2245

    Article  Google Scholar 

  9. Amanda LN, Richard GF. Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Current Opinion in Cell Biology, 2011,23(4): 377–382

    Article  Google Scholar 

  10. Michael G, Joseph S. Molecular cloning: A laboratory Manual. 4th ed. American: Cold Spring Harbor Laboratory Press. 2013,28

    Google Scholar 

  11. Peng Y, Li J, Geng M. The glycan profile of endothelial cells in the present of tumor-conditioned medium and potential roles of beta-1,6-GlcNAc branching on HUVEC conformation. Mol Cell Biochem, 2010,340(1-2):143–152

    Article  CAS  PubMed  Google Scholar 

  12. Zhao LP, Xu G, Zhou JF, et al. The effect of RhoA on human umbilical vein endothelial cell migration and angiogenesis in vitro. Oncology Reports, 2006,15(5):1147–1152

    CAS  PubMed  Google Scholar 

  13. Thomas K, Hellmut GA. Tensional forces in fibrillar extracellular matrices control directional capillary spouting. J Cell Sci, 1999,112(19):3249–3258

    Google Scholar 

  14. Park HJ, Kong D, Iruela-Arispe L, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res, 2002,91(2):143–150

    Article  CAS  PubMed  Google Scholar 

  15. de Vega S, Suzuki N, Nonaka R. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture. Arch Biochem Biophys, 2014,545(10):148–153

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc, 2010,5(4):628–635

    Article  CAS  PubMed  Google Scholar 

  17. Evellin S, Galvagni F, Zippo A. FOSL1 controls the aßsembly of endothelial cells into capillary tubes by direct repression of av and ß3 integrin transcription. Mol Cell Biol, 2013,33(6):1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis GE, Mavila A, Bayless K. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec, 2002,268(3):252–275

    Article  CAS  PubMed  Google Scholar 

  19. Drake CJ, Little CD. VEGF and vascular fusion: implications for normal and pathological vessels. J Histochem Cytochem, 1999,47(11):1351–1356

    Article  CAS  PubMed  Google Scholar 

  20. Niggli V, Rossy J. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol, 2008,40(3):344–349

    Article  CAS  PubMed  Google Scholar 

  21. Moleirinho S, Tilston-Lunel A, Angus L, et al. The expanding family of FERM proteins. Biochem J, 2013,452(2):183–193

    Article  CAS  PubMed  Google Scholar 

  22. Arpin M, Chirivino D, Naba A, et al. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr, 2011,5(2): 199–206

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 2010,11(4): 276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosanquet DC, Ye L, Harding KG, et al. FERM family proteins and their importance in cellular movements and wound healing. Int J Mol Med, 2014,34(1):3–12

    CAS  PubMed  Google Scholar 

  25. Jiang QY, Xia JM, Ding HG, et al. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod, 2012,18(9):435–441

    Article  CAS  PubMed  Google Scholar 

  26. Rasmussen M, Alexander RT, Darborg BV, et al. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications. Am J Physiol Cell Physiol, 2008,294(1):197–212

    Article  Google Scholar 

  27. Hamada K, Shimizu T, Matsui T, et al. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin ferm domain. EMBO J, 2000,19(17):4449–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maniti O, Carvalho K, Picart C. Model membranes to shed light on the biochemical and physical properties of ezrin/radixin/moesin. Biochimie, 2013,95(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsujita K, Itoh T. Phosphoinositides in the regulation of actin cortex and cell migration. Biochim Biophys Acta, 2015,1851(6):824–831

    Article  CAS  PubMed  Google Scholar 

  30. Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY. Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis. Asian J Androl, 2015,17(4):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McClatchey AI. ERM proteins at a glance. J Cell Sci, 2014,127(15):3199–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vásquez-Limeta A, Wagstaff KM, Ortega A, et al. Nuclear import of ß-dystroglycan is facilitated by ezrinmediated cytoskeleton reorganization. PLoS One, 2014,9(3):e90629

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-hua Zhang  (张庆华).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 81101950) and Research Project Foundation of Health and Family Planning Commission of Wuhan City (No. WX15C37).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Lp., Huang, L., Tian, X. et al. Knockdown of ezrin suppresses the migration and angiogenesis of human umbilical vein endothelial cells in vitro . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 243–248 (2016). https://doi.org/10.1007/s11596-016-1574-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1574-y

Key words

Navigation