Skip to main content
Log in

Application of atomic force microscopy for characteristics of single intermolecular interactions

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) can be used to make measurements in vacuum, air, and water. The method is able to gather information about intermolecular interaction forces at the level of single molecules. This review encompasses experimental and theoretical data on the characterization of ligand-receptor interactions by AFM. The advantage of AFM in comparison with other methods developed for the characterization of single molecular interactions is its ability to estimate not only rupture forces, but also thermodynamic and kinetic parameters of the rupture of a complex. The specific features of force spectroscopy applied to ligand-receptor interactions are examined in this review from the stage of the modification of the substrate and the cantilever up to the processing and interpretation of the data. We show the specificities of the statistical analysis of the array of data based on the results of AFM measurements, and we discuss transformation of data into thermodynamic and kinetic parameters (kinetic dissociation constant, Gibbs free energy, enthalpy, and entropy). Particular attention is paid to the study of polyvalent interactions, where the definition of the constants is hampered due to the complex stoichiometry of the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

APTES:

3-aminopropyltriethoxysilane

CFS:

chemical force spectroscopy

PEG:

polyethylene glycol

PPV:

plum pox virus

SMFS:

single-molecule force spectroscopy

SCFS:

single-cell force spectroscopy

References

  1. Varfolomeev, S. D., and Gurevich, K. G. (2001) Russ. Chem. Bull., 50, 1709–1717.

    Article  CAS  Google Scholar 

  2. Gurevich, K. G., Agutter, P. S., and Wheatley, D. N. (2003) Cell. Signal., 15, 447–453.

    Article  PubMed  CAS  Google Scholar 

  3. Bongrand, P. (1999) Rep. Progr. Phys., 62, 921–968.

    Article  CAS  Google Scholar 

  4. Porstmann, T., and Kiessig, S. T. (1992) J. Immunol. Methods, 150, 5–21.

    Article  PubMed  CAS  Google Scholar 

  5. Sanderink, G. J., Artur, Y., and Siest, G. (1988) J. Clin. Chem. Clin. Biochem., 26, 795–807.

    PubMed  CAS  Google Scholar 

  6. Monsellier, E., and Bedouelle, H. (2005) Protein Eng. Des. Sel., 18, 445–456.

    Article  PubMed  CAS  Google Scholar 

  7. Le, X. C., Pavski, V., and Wang, H. L. (2005) Can. J. Chem., 83, 185–194.

    Article  CAS  Google Scholar 

  8. Landon, L. A., Harden, W., Illy, C., and Deutscher, S. L. (2004) Anal. Biochem., 331, 60–67.

    PubMed  CAS  Google Scholar 

  9. Lagerkvist, A. C., Foldes-Papp, Z., Persson, M. A. A., and Rigler, R. (2001) Protein Sci., 10, 1522–1528.

    Article  PubMed  CAS  Google Scholar 

  10. Wan, Q. H., and Le, X. C. (1999) Anal. Chem., 71, 4183–4189.

    Article  PubMed  CAS  Google Scholar 

  11. Eremin, S. A., and Smith, D. S. (2003) Comb. Chem. High Throughput Screen., 6, 257–266.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, D. S., and Eremin, S. A. (2008) Anal. Bioanal. Chem., 391, 1499–1507.

    Article  PubMed  CAS  Google Scholar 

  13. Myszka, D. G., Morton, T. A., Doyle, M. L., and Chaiken, I. M. (1997) Biophys. Chem., 64, 127–137.

    Article  PubMed  CAS  Google Scholar 

  14. Quinn, J. G., and O’Kennedy, R. (2001) Anal. Biochem., 290, 36–46.

    Article  PubMed  CAS  Google Scholar 

  15. Katsamba, P. S., Navratilova, I., Calderon-Cacia, M., Fan, L., Thornton, K., Zhu, M., Bos, T. V., Forte, C., Friend, D., Laird-Offringa, I., Tavares, G., Whatley, J., Shi, E., Widom, A., Lindquist, K. C., Klakamp, S., Drake, A., Bohmann, D., Roell, M., Rose, L., Dorocke, J., Roth, B., Luginbuhl, B., and Myszka, D. G. (2006) Anal. Biochem., 352, 208–221.

    Article  PubMed  CAS  Google Scholar 

  16. Tanious, F. A., Nguyen, B., and Wilson, W. D. (2008) Methods Cell Biol., 84, 53–77.

    Article  PubMed  CAS  Google Scholar 

  17. Miyata, H., Yasuda, R., and Kinosita, K. (1996) Biochim. Biophys. Acta, Gen. Subj., 1290, 83–88.

    Article  Google Scholar 

  18. Evans, E., Ritchie, K., and Merkel, R. (1995) Biophys. J., 68, 2580–2587.

    Article  PubMed  CAS  Google Scholar 

  19. Kaplanski, G., Farnarier, C., Tissot, O., Pierres, A., Benoliel, A. M., Alessi, M. C., Kaplanski, S., and Bongrand, P. (1993) Biophys. J., 64, 1922–1933.

    Article  PubMed  CAS  Google Scholar 

  20. Alon, R., Hammer, D. A., and Springer, T. A. (1995) Nature, 374, 539–542.

    Article  PubMed  CAS  Google Scholar 

  21. Florin, E., Moy, V., and Gaub, H. (1994) Science, 264, 415–417.

    Article  PubMed  CAS  Google Scholar 

  22. Balnois, E., Papastavrou, G., and Wilkinson, K. J. (2007) in Environmental Colloids and Particles, John Wiley & Sons, Inc, New York, pp. 405–467.

    Google Scholar 

  23. Archakov, A. I., Ivanov, Y. D., Lisitsa, A. V., and Zgoda, V. G. (2007) Proteomics, 7, 4–9.

    Article  PubMed  CAS  Google Scholar 

  24. Archakov, A. I., and Ivanov, Y. D. (2011) Biochim. Biophys. Acta, 1814, 102–110.

    Article  PubMed  CAS  Google Scholar 

  25. Kiselyova, O. I., and Yaminsky, I. V. (2002) Phys. Low-Dim. Struct., 3/4, 1–26.

    Google Scholar 

  26. Binnig, G., Quate, C. F., and Gerber, C. (1986) Phys. Rev. Lett., 56, 930.

    Article  PubMed  Google Scholar 

  27. Butt, H. J., Cappella, B., and Kappl, M. (2005) Surf. Sci. Rep., 59, 1–152.

    Article  CAS  Google Scholar 

  28. Moy, V. T., Florin, E. L., and Gaub, H. E. (1994) Science, 266, 257–259.

    Article  PubMed  CAS  Google Scholar 

  29. Dammer, U., Hegner, M., Anselmetti, D., Wagner, P., Dreier, M., Huber, W., and Guntherodt, H. J. (1996) Biophys. J., 70, 2437–2441.

    Article  PubMed  CAS  Google Scholar 

  30. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Proc. Natl. Acad. Sci. USA, 93, 3477–3481.

    Article  PubMed  CAS  Google Scholar 

  31. Ros, R., Schwesinger, F., Anselmetti, D., Kubon, M., Schafer, R., Pluckthun, A., and Tiefenauer, L. (1998) Proc. Natl. Acad. Sci. USA, 95, 7402–7405.

    Article  PubMed  CAS  Google Scholar 

  32. Tuzov, I. V., and Yaminsky, I. V. (1995) Russ. Chem. Bull., 44, 2073–2078.

    Article  Google Scholar 

  33. Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., Richter, M., Rief, M., Gaub, H. E., Plaxco, K. W., Cleland, A. N., Hansma, H. G., and Hansma, P. K. (1999) Rev. Sci. Instrum., 70, 4300–4303.

    Article  CAS  Google Scholar 

  34. Gopalakrishnan, M., Forsten-Williams, K., Cassino, T. R., Padro, L., Ryan, T. E., and Tauber, U. C. (2005) Eur. Biophys. J., 34, 943–958.

    Article  PubMed  CAS  Google Scholar 

  35. Yuan, C., Chen, A., Kolb, P., and Moy, V. T. (2000) Biochemistry, 39, 10219–10223.

    Article  PubMed  CAS  Google Scholar 

  36. De Paris, R., Strunz, T., Oroszlan, K., Guntherodt, H.-J., and Hegner, M. (2000) Single Molecules, 1, 285–290.

    Article  Google Scholar 

  37. Allen, S., Davies, J., Dawkes, A. C., Davies, M. C., Edwards, J. C., Parker, M. C., Roberts, C. J., Sefton, J., Tendler, S. J. B., and Williams, P. M. (1996) FEBS Lett., 390, 161–164.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, G. U., Kidwell, D. A., and Colton, R. J. (1994) Langmuir, 10, 354–357.

    Article  CAS  Google Scholar 

  39. Bizzarri, A. R., and Cannistraro, S. (2010) Chem. Soc. Rev., 39, 734–749.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, G., Chrisey, L., and Colton, R. (1994) Science, 266, 771–773.

    Article  PubMed  CAS  Google Scholar 

  41. Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Guntherodt, H., and Misevic, G. (1995) Science, 267, 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  42. Morfill, J., Blank, K., Zahnd, C., Luginbuhl, B., Kuhner, F., Gottschalk, K. E., Pluckthun, A., and Gaub, H. E. (2007) Biophys. J., 93, 3583–3590.

    Article  PubMed  CAS  Google Scholar 

  43. Allen, S., Chen, X., Davies, J., Davies, M. C., Dawkes, A. C., Edwards, J. C., Roberts, C. J., Sefton, J., Tendler, S. J., and Williams, P. M. (1997) Biochemistry, 36, 7457–7463.

    Article  PubMed  CAS  Google Scholar 

  44. Kuhner, F., Costa, L. T., Bisch, P. M., Thalhammer, S., Heckl, W. M., and Gaub, H. E. (2004) Biophys. J., 87, 2683–2690.

    Article  PubMed  CAS  Google Scholar 

  45. Fuhrmann, A., Schoening, J. C., Anselmetti, D., Staiger, D., and Ros, R. (2009) Biophys. J., 96, 5030–5039.

    Article  PubMed  CAS  Google Scholar 

  46. Baumgarth, B., Bartels, F. W., Anselmetti, D., Becker, A., and Ros, R. (2005) Microbiology, 151, 259–268.

    Article  PubMed  CAS  Google Scholar 

  47. Bartels, F. W., McIntosh, M., Fuhrmann, A., Metzendorf, C., Plattner, P., Sewald, N., Anselmetti, D., Ros, R., and Becker, A. (2007) Biophys. J., 92, 4391–4400.

    Article  PubMed  CAS  Google Scholar 

  48. Bartels, F. W., Baumgarth, B., Anselmetti, D., Ros, R., and Becker, A. (2003) J. Struct. Biol., 143, 145–152.

    Article  PubMed  CAS  Google Scholar 

  49. Lynch, S., Baker, H., Byker, S. G., Zhou, D., and Sinniah, K. (2009) Chem. — A Eur. J., 15, 8113–8116.

    Article  CAS  Google Scholar 

  50. Eckel, R., Wilking, S. D., Becker, A., Sewald, N., Ros, R., and Anselmetti, D. (2005) Angew. Chem. Int. Ed., 44, 3921–3924.

    Article  CAS  Google Scholar 

  51. Porter-Peden, L., Kamper, S. G., Wal, M. V., Blankespoor, R., and Sinniah, K. (2008) Langmuir, 24, 11556–11561.

    Article  PubMed  CAS  Google Scholar 

  52. Neuman, K. C., and Nagy, A. (2008) Nat. Meth., 5, 491–505.

    Article  CAS  Google Scholar 

  53. Hinterdorfer, P., and Dufrene, Y. F. (2006) Nat. Meth., 3, 347–355.

    Article  CAS  Google Scholar 

  54. Bizzarri, A. R., and Cannistraro, S. (2009) J. Phys. Chem. B, 113, 16449–16464.

    Article  PubMed  CAS  Google Scholar 

  55. Amrein, M., and Muller, D. (1999) Nanobiology, 4, 229–256.

    CAS  Google Scholar 

  56. Wagner, P. (1998) FEBS Lett., 430, 112–115.

    Article  PubMed  CAS  Google Scholar 

  57. Muller, D. J., Amrein, M., and Engel, A. (1997) J. Struct. Biol., 119, 172–188.

    Article  PubMed  CAS  Google Scholar 

  58. Adamcik, J., Klinov, D. V., Witz, G., Sekatskii, S. K., and Dietler, G. (2006) FEBS Lett., 580, 5671–5675.

    Article  PubMed  CAS  Google Scholar 

  59. Wagner, P., Hegner, M., Kernen, P., Zaugg, F., and Semenza, G. (1996) Biophys. J., 70, 2052–2066.

    Article  PubMed  CAS  Google Scholar 

  60. Shao, Z. F., Mou, J., Czajkowsky, D. M., Yang, J., and Yuan, J. Y. (1996) Adv. Phys., 45, 1–86.

    Article  CAS  Google Scholar 

  61. Tatte, T., Saal, K., Kink, I., Kurg, A., Lohmus, R., Maeorg, U., Rahi, M., Rinken, A., and Lohmus, A. (2003) Surf. Sci., 532–535, 1085–1091.

    Article  CAS  Google Scholar 

  62. Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H., and Drenckhahn, D. (2000) Proc. Natl. Acad. Sci. USA, 97, 4005–4010.

    Article  PubMed  CAS  Google Scholar 

  63. Kollar, V., Szatmari, D., Grama, L., and Kellermayer, M. S. (2010) J. Biomed. Biotechnol., 2010, 1–8.

    Article  CAS  Google Scholar 

  64. Krasnoslobodtsev, A. V., Shlyakhtenko, L. S., and Lyubchenko, Y. L. (2007) J. Mol. Biol., 365, 1407–1416.

    Article  PubMed  CAS  Google Scholar 

  65. Vezenov, D. V., Noy, A., Rozsnyai, L. F., and Lieber, C. M. (1997) J. Am. Chem. Soc., 119, 2006–2015.

    Article  Google Scholar 

  66. Haselgrubler, T., Amerstorfer, A., Schindler, H., and Gruber, H. J. (1995) Bioconjug. Chem., 6, 242–248.

    Article  PubMed  CAS  Google Scholar 

  67. Bonanni, B., Bizzarri, A. R., and Cannistraro, S. (2006) J. Phys. Chem. B, 110, 14574–14580.

    Article  PubMed  CAS  Google Scholar 

  68. Kienberger, F., Kada, G., Gruber, H. J., Pastushenko, V. P., Riener, C., Trieb, M., Knaus, H.-G., Schindler, H., and Hinterdorfer, P. (2000) Single Molecules, 1, 59–65.

    Article  CAS  Google Scholar 

  69. Barattin, R., Voyer, N., Braga, P. C., and Ricci, D. (2011) in Atomic Force Microscopy in Biomedical Research (Walker, J. M., ed.) Humana Press, pp. 457–483.

  70. Bergkvist, M., Cady, N. C., and Mark, S. S. (2011) in Bioconjugation Protocols (Walker, J. M., ed.) Humana Press, pp. 381–400.

  71. Barattin, R., and Voyer, N. (2008) Chem. Commun., 1513–1532.

  72. Berquand, A., Xia, N., Castner, D. G., Clare, B. H., Abbott, N. L., Dupres, V., Adriaensen, Y., and Dufrene, Y. F. (2005) Langmuir, 21, 5517–5523.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang, Y., Yu, Y., Jiang, Z., Xu, H., Wang, Z., Zhang, X., Oda, M., Ishizuka, T., Jiang, D., Chi, L., and Fuchs, H. (2009) Langmuir, 25, 6627–6632.

    Article  PubMed  CAS  Google Scholar 

  74. Bonanni, B., Kamruzzahan, A. S. M., Bizzarri, A. R., Rankl, C., Gruber, H. J., Hinterdorfer, P., and Cannistraro, S. (2005) Biophys. J., 89, 2783–2791.

    Article  PubMed  CAS  Google Scholar 

  75. Maki, T., Kidoaki, S., Usui, K., Suzuki, H., Ito, M., Ito, F., Hayashizaki, Y., and Matsuda, T. (2007) Langmuir, 23, 2668–2673.

    Article  PubMed  CAS  Google Scholar 

  76. Schwesinger, F., Ros, R., Strunz, T., Anselmetti, D., Guntherodt, H.-J., Honegger, A., Jermutus, L., Tiefenauer, L., and Pluckthun, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 9972–9977.

    Article  PubMed  CAS  Google Scholar 

  77. Janovjak, H., Struckmeier, J., and Muller, D. J. (2005) Eur. Biophys. J., 34, 91–96.

    Article  PubMed  CAS  Google Scholar 

  78. Yew, Z. T., Olmsted, P. D., and Paci, E. (2012) in Single-Molecule Biophysics, John Wiley & Sons, Inc., New York, pp. 395–417.

    Google Scholar 

  79. Schlierf, M., Yew, Z. T., Rief, M., and Paci, E. (2010) Biophys. J., 99, 1620–1627.

    Article  PubMed  CAS  Google Scholar 

  80. Evans, E., and Ritchie, K. (1997) Biophys. J., 72, 1541–1555.

    Article  PubMed  CAS  Google Scholar 

  81. Fritz, J., Katopodis, A. G., Kolbinger, F., and Anselmetti, D. (1998) Proc. Natl. Acad. Sci. USA, 95, 12283–1238.

    Article  PubMed  CAS  Google Scholar 

  82. Janshoff, A., Neitzert, M., Oberdorfer, Y., and Fuchs, H. (2000) Angew. Chem. Int. Ed., 39, 3212–3237.

    CAS  Google Scholar 

  83. Fuhrmann, A., Anselmetti, D., Ros, R., Getfert, S., and Reimann, P. (2008) Phys. Rev. E, 77, 031912-1–10.

    Article  CAS  Google Scholar 

  84. Levy, R., and Maaloum, M. (2005) Ultramicroscopy, 102, 311–315.

    Article  PubMed  CAS  Google Scholar 

  85. Odorico, M., Teulon, J. M., Berthoumieu, O., Chen, S. W., Parot, P., and Pellequer, J. L. (2007) Ultramicroscopy, 107, 887–894.

    Article  PubMed  CAS  Google Scholar 

  86. Sandal, M., Benedetti, F., Brucale, M., Gomez-Casado, A., and Samori, B. (2009) Bioinformatics, 25, 1428–1430.

    Article  PubMed  CAS  Google Scholar 

  87. Carl, P., Kwok, C. H., Manderson, G., Speicher, D. W., and Discher, D. E. (2001) Proc. Natl. Acad. Sci. USA, 98, 1565–1570.

    Article  PubMed  CAS  Google Scholar 

  88. Gergely, C., Senger, B., Voegel, J. C., Horber, J. K. H., Schaaf, P., and Hemmerle, J. (2000) Ultramicroscopy, 87, 67–78.

    Article  Google Scholar 

  89. Patrick, D. B., Fabio, C., Patrick, L. T. M. F., Merce, R., Christian, A. B., Daniel, J. M., Manuel, P., Andreas, E., and Dimitrios, F. (2008) Nanotechnology, 19, 384014.

    Article  CAS  Google Scholar 

  90. Baumgartner, W., Hinterdorfer, P., and Schindler, H. (2000) Ultramicroscopy, 82, 85–95.

    Article  PubMed  CAS  Google Scholar 

  91. Basnar, B., Elnathan, R., and Willner, I. (2006) Anal. Chem., 78, 3638–3642.

    Article  PubMed  CAS  Google Scholar 

  92. Hinterdorfer, P., Kienberger, F., Raab, A., Gruber, H. J., Baumgartner, W., Kada, G., Riener, C., Wielert-Badt, S., Borken, C., and Schindler, H. (2000) Single Molecules, 1, 99–103.

    Article  CAS  Google Scholar 

  93. Zhang, X., Craig, S. E., Kirby, H., Humphries, M. J., and Moy, V. T. (2004) Biophys. J., 87, 3470–3478.

    Article  PubMed  CAS  Google Scholar 

  94. Pincet, F., and Husson, J. (2005) Biophys. J., 89, 4374–4381.

    Article  PubMed  CAS  Google Scholar 

  95. Sulchek, T. A., Friddle, R. W., Langry, K., Lau, E. Y., Albrecht, H., Ratto, T. V., DeNardo, S. J., Colvin, M. E., and Noy, A. (2005) Proc. Natl. Acad. Sci. USA, 102, 16638–16643.

    Article  PubMed  CAS  Google Scholar 

  96. Kienberger, F., Ebner, A., Gruber, H. J., and Hinterdorfer, P. (2005) Acc. Chem. Res., 39, 29–36.

    Article  CAS  Google Scholar 

  97. Janshoff, A., and Steinem, C. (2001) ChemPhysChem, 2, 577–579.

    Article  CAS  Google Scholar 

  98. Bell, G. I. (1978) Science, 200, 618–627.

    Article  PubMed  CAS  Google Scholar 

  99. Funari, G., Domenici, F., Nardinocchi, L., Puca, R., D’Orazi, G., Bizzarri, A. R., and Cannistraro, S. (2010) J. Mol. Recognit., 23, 343–351.

    Article  PubMed  CAS  Google Scholar 

  100. Taranta, M., Bizzarri, A. R., and Cannistraro, S. (2008) J. Mol. Recognit., 21, 63–70.

    Article  PubMed  CAS  Google Scholar 

  101. Neuert, G., Albrecht, C., Pamir, E., and Gaub, H. E. (2006) FEBS Lett., 580, 505–509.

    Article  PubMed  CAS  Google Scholar 

  102. Yuan, C., Chen, A., Kolb, P., and Moy, V. T. (2000) Biochemistry, 39, 10219–10223.

    Article  PubMed  CAS  Google Scholar 

  103. Jarzynski, C. (1997) Phys. Rev. Lett., 78, 2690–2693.

    Article  CAS  Google Scholar 

  104. Jarzynski, C. (2008) Eur. Phys. J. B., 64, 331–340.

    Article  CAS  Google Scholar 

  105. Liu, W., Montana, V., Parpura, V., and Mohideen, U. (2011) Biophys. J., 101, 1854–1862.

    Article  PubMed  CAS  Google Scholar 

  106. Liu, W., Montana, V., Parpura, V., and Mohideen, U. (2008) Biophys. J., 95, 419–425.

    Article  PubMed  CAS  Google Scholar 

  107. Bizzarri, A. R., and Cannistraro, S. (2010) Phys. Chem. Chem. Phys., 13, 2738–2743.

    Article  PubMed  CAS  Google Scholar 

  108. Karulin, A., and Dzantiev, B. B. (1990) Mol. Immunol., 27, 965–971.

    Article  PubMed  CAS  Google Scholar 

  109. Yang, T., Baryshnikova, O. K., Mao, H., Holden, M. A., and Cremer, P. S. (2003) J. Am. Chem. Soc., 125, 4779–4784.

    Article  PubMed  CAS  Google Scholar 

  110. Sadana, A., and Vo-Dinh, T. (1997) Appl. Biochem. Biotechnol., 67, 1–22.

    Article  PubMed  CAS  Google Scholar 

  111. Wickham, T. J., Granados, R. R., Wood, H. A., Hammer, D. A., and Shuler, M. L. (1990) Biophys. J., 58, 1501–1516.

    Article  PubMed  CAS  Google Scholar 

  112. Hendrickson, O. D., Zherdev, A. V., Kaplun, A. P., and Dzantiev, B. B. (2002) Mol. Immunol., 39, 413–422.

    Article  PubMed  CAS  Google Scholar 

  113. Raweeritha, R., and Ratanabanangkoon, K. (2005) Toxicon, 45, 369–375.

    Article  CAS  Google Scholar 

  114. Mammen, M., Choi, S. K., and Whitesides, G. M. (1998) Angew. Chem. Int. Ed., 37, 2754–2794.

    Article  Google Scholar 

  115. Zherdev, A. V., and Dzantiev, B. B. (1996) Appl. Biochem. Microbiol., 32, 179–187.

    Google Scholar 

  116. Azimzadeh, A., and Van Regenmortel, M. H. (1991) J. Immunol. Methods, 141, 199–208.

    Article  PubMed  CAS  Google Scholar 

  117. Dimmock, N. J., and Hardy, S. A. (2004) Rev. Med. Virol., 14, 123–135.

    Article  PubMed  CAS  Google Scholar 

  118. Ratto, T. V., Rudd, R. E., Langry, K. C., Balhorn, R. L., and McElfresh, M. W. (2006) Langmuir, 22, 1749–1757.

    Article  PubMed  CAS  Google Scholar 

  119. Sulchek, T., Friddle, R. W., and Noy, A. (2006) Biophys. J., 90, 4686–4691.

    Article  PubMed  CAS  Google Scholar 

  120. Sulchek, T., Friddle, R., Ratto, T., Albrecht, H., DeNardo, S., and Noy, A. (2009) Ann. NY Acad. Sci., 1161, 74–82.

    Article  PubMed  CAS  Google Scholar 

  121. Gomez-Casado, A., Dam, H. H., Yilmaz, M. D., Florea, D., Jonkheijm, P., and Huskens, J. (2011) J. Am. Chem. Soc., 133, 10849–10857.

    Article  PubMed  CAS  Google Scholar 

  122. Safenkova, I. V., Zherdev, A. V., and Dzantiev, B. B. (2011) Proc. Third Sci. Conf. “Control of Content and Safety of Nanoparticles in the Agricultural and Food Products” [in Russian], Publishing complex MGUPP, Moscow, pp. 36–46.

    Google Scholar 

  123. Safenkova, I. V. (2010) Interaction of Pant Viruses with Antibodies: Quantitative Principles and Practical Application: Candidate’s dissertation [in Russian], INBI RAN, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Safenkova.

Additional information

Published in Russian in Uspekhi Biologicheskoi Khimii, 2012, Vol. 52, pp. 281–314.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safenkova, I.V., Zherdev, A.V. & Dzantiev, B.B. Application of atomic force microscopy for characteristics of single intermolecular interactions. Biochemistry Moscow 77, 1536–1552 (2012). https://doi.org/10.1134/S000629791213010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791213010X

Key words

Navigation