Skip to main content
Log in

Hydrodynamic effects in fast AFM single-molecule force measurements

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor–ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few μm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 μm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 μm/s pulling speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a–c

Similar content being viewed by others

Abbreviations

AFM:

atomic force micrcoscopy

pN:

piconewton

BR:

bacteriorhodopsin

DFS:

dynamic force spectroscopy

Ig27:

immunoglobulin 27

If27-8:

immunoglobulin 27 octameric construct

BFP:

biomembrane force probe

References

  • Alcaraz J, Buscemi L, Puig de Morales M, Colchero J, Baro A, Navajas D (2002) Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18:716–721

    Article  CAS  Google Scholar 

  • Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  • Cox RG, Brenner H (1967) Slow motion of a sphere through a viscous fluid towards a plane surface: small gap widths including inertial effects. Chem Eng Sci 22:1753

    Article  Google Scholar 

  • Czajkowsky DM, Iwamoto H, Shao Z (2000) Atomic force microscopy in structural biology: from the subcellular to the submolecular. J Electron Microsc 49:395–406

    CAS  Google Scholar 

  • de Paris R, Strunz T, Güntherodt HJ, Hegner M (2000) Force spectroscopy and dynamics of the biotin-avidin bond studied by scanning force microscopy. Single Mol 1:285–290

    Article  Google Scholar 

  • Evans E (2001) Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    CAS  PubMed  Google Scholar 

  • Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular interactions with the atomic force microscope. Biosensors Bioelectr 10:895–901

    Article  CAS  Google Scholar 

  • Fritz J, Katopodis AG, Kolbinger F, Anselmetti D (1998) Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 95:12283–12288

    Article  CAS  PubMed  Google Scholar 

  • Gittes F, Schmidt CF (1998) Thermal noise limitations on micromechanical experiments. Eur Biophys J 27:75–81

    Article  CAS  Google Scholar 

  • Hinterdorfer P, Kienberger F, Raab A, Gruber HJ, Baumgartner W, Kada G, Riener C, Wielert-Badt S, Borken C, Schindler H (2000) Poly(ethylene glycol): an ideal spacer for molecular recognition force microscopy/spectroscopy. Single Mol 1:99–103

    Article  CAS  Google Scholar 

  • Janovjak H, Kessler M, Oesterhelt D, Gaub H, Muller DJ (2003) Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J 22:5220–5229

    Article  CAS  PubMed  Google Scholar 

  • Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Muller DJ (2004) Probing the energy landscape of the membrane protein bacteriorhodopsin. Structure (Camb) 12:871–879

    Google Scholar 

  • Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    CAS  PubMed  Google Scholar 

  • Lo YS, Zhu YJ, Beebe TP (2001) Loading-rate dependence of individual ligand-receptor bond-rupture forces studied by atomic force microscopy. Langmuir 17:3741–3748

    Article  CAS  Google Scholar 

  • Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  CAS  PubMed  Google Scholar 

  • Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257–259

    CAS  PubMed  Google Scholar 

  • Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K (2002a) Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 79:1–43

    Article  PubMed  Google Scholar 

  • Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H (2002b) Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys J 83:3578–3588

    PubMed  Google Scholar 

  • O’Shea SJ, Welland ME (1998) Atomic force microscopy at solid-liquid interfaces. Langmuir 14:4186–4197

    Article  Google Scholar 

  • Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  CAS  PubMed  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  • Rief M, Gautel M, Schemmel A, Gaub HE (1998) The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J 75:3008–3014

    CAS  PubMed  Google Scholar 

  • Roters A, Johannsmann D (1996) Distance-dependent noise measurements in scanning force microscopy. J Phys Condens Matt 8:7561–7577

    Article  CAS  Google Scholar 

  • Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci USA 96:11277–12782

    Article  CAS  PubMed  Google Scholar 

  • Viani MB, Schaffer TE, Chand A, Rief M, Gaub HE, Hansma PK (1999a) Small cantilevers for force spectroscopy of single molecules. J Appl Phys 86:2258–2262

    Article  CAS  Google Scholar 

  • Viani MB, Schaffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999b) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Instrum 70:4300–4303

    Article  CAS  Google Scholar 

  • Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590

    Article  CAS  Google Scholar 

  • Williams PM, Fowler SB, Best RB, Toca-Herrera JL, Scott KA, Steward A, Clarke J (2003) Hidden complexity in the mechanical properties of titin. Nature 422:446–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ben Ohler, Alexej Kedrov, Julio Fernandez for his kind gift of the Ig27-8 sample, Niels Anspach, Ingmar Riedel, Matthias Rief, K. Tanuj Sapra and Pierre-Henri Puech. This work was supported by the Volkswagen Stiftung, the Free State of Saxony, and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janovjak, H., Struckmeier, J. & Müller, D.J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur Biophys J 34, 91–96 (2005). https://doi.org/10.1007/s00249-004-0430-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0430-3

Keywords

Navigation