Skip to main content
Log in

Probabilistic Criterion-Based Optimal Retention of Trajectories of a Discrete-Time Stochastic System in a Given Tube: Bilateral Estimation of the Bellman Function

  • stochastic systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper examines an optimal control problem with a probabilistic criterion for retaining the trajectories of a discrete-time stochastic system in given sets. The dynamic programming method is employed for obtaining the isobells of levels 1 and 0 of the Bellman function, two-sided estimates for the right-hand side of the dynamic programming equation, two-sided estimates for the Bellman function, and the optimal-value function of the probabilistic criterion. These results are then used for deriving an approximate formula for the optimal control. As an illustrative example the problem of keeping an inverted pendulum in the neighborhood of an unstable equilibrium is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malyshev, V. V. & Kibzun, A. I. Analiz i sintez vysokotochnogo upravleniya letatelanymi apparatami (Analysis and Design of High-Precision Control of Aircrafts). (Mashinostroenie, Moscow, 1987).

    Google Scholar 

  2. Kan, Yu. S. Control Optimization by the Quantile Criterion, Autom. Remote Control 62(no. 5), 746–757 (2001).

    Article  MathSciNet  Google Scholar 

  3. Okhotsimskii, D. E., Ryasin, V. A. & Chentsov, N. N. Optimal Strategy for Correction. Dokl. Akad. Nauk SSSR 175(no. 1), 47–50 (1967).

    Google Scholar 

  4. Grigor’ev, P. V. & Kan, Yu. S. Optimal Control of the Investment Portfolio with Respect to the Quantile Criterion, Autom. Remote Control 65(no. 2), 319–336 (2004).

    Article  MathSciNet  Google Scholar 

  5. Bunto, T. V. & Kan, Yy. S. Quantile Criterion-based Control of the Securities Portfolio with a Nonzero Ruin Probability. Autom. Remote Control 74(no. 5), 811–828 (2013).

    Article  MathSciNet  Google Scholar 

  6. Kibzun, A. I. & Ignatov, A. N. The Two-Step Problem of Investment Portfolio Selection from Two Risk Assets via the Probability Criterion. Autom. Remote Control 76(no. 7), 1201–1220 (2015).

    Article  MathSciNet  Google Scholar 

  7. Jasour, A. M., Aybat, N. S. & Lagoa, C. M. Semidefinite Programming for Chance Constrained Optimization over Semialgebraic Sets. SIAM J. Optim. no. 25(3), 1411–1440 (2015).

    Article  MathSciNet  Google Scholar 

  8. Jasour, A.M. and Lagoa, C.M.Convex Chance Constrained Model Predictive Control, arXiv:1603.07413, 2016.

  9. Jasour, A.M. and Lagoa, C.M.Convex Relaxations of a Probabilistically Robust Control Design Problem, 52nd IEEE Conf. on Decision and Control, Florence, Italy, 2013, pp. 1892–1897.

  10. Kibzun, A. I. & Ignatov, A. N. On the Existence of Optimal Strategies in the Control Problem for a Stochastic Discrete Time System with Respect to the Probability Criterion. Autom. Remote Control 78(no. 10), 1845–1856 (2017).

    Article  MathSciNet  Google Scholar 

  11. Azanov, V. M. & Kan, Yu. S. On Optimal Retention of the Trajectory of Discrete Stochastic System in Tube. Autom. Remote Control 80(no. 1), 30–42 (2019).

    Article  MathSciNet  Google Scholar 

  12. Kibzun, A. I. & Kuznetsov, E. A. Optimal Control of the Portfolio. Autom. Remote Control 62(no. 9), 1489–1501 (2001).

    Article  MathSciNet  Google Scholar 

  13. Kibzun, A. I. & Kuznetsov, E. A. Positional Strategy of Forming the Investment Portfolio. Autom. Remote Control 64(no. 1), 138–152 (2003).

    Article  MathSciNet  Google Scholar 

  14. Azanov, V. M. & Kan, Yu. S. Optimal Correction for a Near-circular Orbit of an Artificial Earth Satellite by the Probabilistic Criterion. Tr. Inst. Sist. Anal., Ross. Akad. Nauk no. 2, 18–26 (2015).

    Google Scholar 

  15. Azanov, V. M. & Kan, Yu. S. Design of Optimal Strategies in the Problems of Discrete System Control by the Probabilistic Criterion. Autom. Remote Control 78(no. 6), 1006–1027 (2017).

    Article  MathSciNet  Google Scholar 

  16. Azanov, V. M. & Kan, Yu. S. Bilateral Estimation of the Bellman Function in the Problems of Optimal Stochastic Control of Discrete Systems by the Probabilistic Performance Criterion. Autom. Remote Control 79(no. 2), 203–215 (2018).

    Article  MathSciNet  Google Scholar 

  17. Jasour, A.M. and Lagoa, C.M.Convex Constrained Semialgebraic Volume Optimization: Application in Systems and Control, arXiv:1701.08910. 2017.

  18. Azanov, V. M. & Kan, Yu. S. One-parameter Optimal Correction Problem for the Trajectory of an Aerial Vehicle with respect to the Probability Criterion. J. Comput. Syst. Sci. Int. 55(no. 2), 271–283 (2016).

    Article  MathSciNet  Google Scholar 

  19. Kibzun, A. I. & Kan, Yu. S. Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria). (Fizmatlit, Moscow, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Theorem 2. From the definition of the sets \({{\mathcal{I}}}_{k}\) and \({{\mathcal{O}}}_{k}\) and the dynamic programming relations (3)–(5) it follows that

$${{\mathcal{I}}}_{k}=\left\{x\in {{\mathbb{R}}}^{n}:\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]=1\right\},$$
(A.1)
$${{\mathcal{O}}}_{k}=\left\{x\in {{\mathbb{R}}}^{n}:\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]=0\right\}.$$
(A.2)

Consider some step k of the dynamic programming algorithm (3)–(5). Due to the basic properties of the sets \({{\mathcal{I}}}_{k}\), \({{\mathcal{B}}}_{k}\), and \({{\mathcal{O}}}_{k}\),

$$\begin{array}{cc}{{\rm{B}}}_{k+1}\left(x\right)={{\bf{I}}}_{{{\mathcal{I}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left(x\right)+{{\bf{I}}}_{{{\mathcal{B}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left(x\right)+{{\bf{I}}}_{{{\mathcal{O}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left(x\right)\\ ={{\bf{I}}}_{{{\mathcal{I}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left(x\right)+{{\bf{I}}}_{{{\mathcal{B}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left(x\right).\end{array}$$

Introduce a system of hypotheses forming a complete group of incompatible events:

$$\left\{{f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right\},\quad \left\{{f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\notin {{\mathcal{I}}}_{k+1}\right\}.$$

Rewrite the expression (4) using the total mathematical expectation formula:

$$\begin{array}{ccccc}{{\rm{B}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){{\bf{M}}}_{k}\left[{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right)\left({\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right]\right.\\ \left.+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\notin {{\mathcal{I}}}_{k+1}\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\notin {{\mathcal{I}}}_{k+1}\right]\right).\end{array}$$
(A.3)

In view of the equality

$${{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right]=1,$$

the expression (A.3) takes the form

$$\begin{array}{cccc}{{\rm{B}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right)\left({\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)\right.\\ \left.+{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\notin {{\mathcal{I}}}_{k+1}){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}({f}_{k}(x,{u}_{k},{\xi }_{k}))\right|{f}_{k}(x,{u}_{k},{\xi }_{k})\notin {{\mathcal{I}}}_{k+1}\right]\right)\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}(x)\left({\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{I}}}_{k+1})+(1-{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{I}}}_{k+1}))\right.\\ \left.\times {{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\notin {{\mathcal{I}}}_{k+1}\right]\right).\end{array}$$
(A.4)

Since

$${{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\notin {{\mathcal{I}}}_{k+1}\right]\in \left[0,1\right),$$

the right-hand side of (A.4) is equal to 1 if and only if

$$\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=1.$$

Hence, (A.1) reduces to

$$\begin{array}{cccc}{{\mathcal{I}}}_{k}=\left\{x\in {{\mathbb{R}}}^{n}:\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]=1\right\}\\ =\left\{x\in {{\mathbb{R}}}^{n}:\quad \mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=1\right\}\\ ={{\mathcal{F}}}_{k}\cap \left\{x\in {{\mathbb{R}}}^{n}:\quad \mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=1\right\}\\ ={{\mathcal{F}}}_{k}\cap \left\{x\in {{\mathbb{R}}}^{n}:\quad \exists {u}_{k}\in {U}_{k}:\quad {\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=1\right\}.\end{array}$$
(A.5)

From (A.5) it follows that for \({x}_{k}\in {{\mathcal{I}}}_{k}\), the optimal control is any element from the set

$${U}_{k}^{{\mathcal{I}}}\left({x}_{k}\right)=\left\{u\in {U}_{k}:\,{\bf{P}}\left({f}_{k}\left({x}_{k},u,{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=1\right\}.$$
(A.6)

Items 1, 3, and 5 of Theorem 2 are established.

Now introduce another system of hypotheses forming a complete group of incompatible events:

$$\left\{{f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right\},\quad \left\{{f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right\},\quad \left\{{f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right\}.$$

Rewrite the expression (4) using the total mathematical expectation formula:

$$\begin{array}{ccccccc}{{\rm{B}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){{\bf{M}}}_{k}\left[{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right)\left({\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)\right.\\ \times {{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right]\\ +{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\\ \left.+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right]\right).\end{array}$$
(A.7)

Due to the equalities

$$\begin{array}{l}{{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right]=1,\\ {{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right]=0,\end{array}$$

the expression (A.1) takes the form

$$\begin{array}{lcl}{{\rm{B}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right)\left({\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)\right.\\ \left.+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\right).\end{array}$$
(A.8)

Since

$${{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\in \left(0,1\right),$$

the right-hand side of the expression (A.8) is equal to 0 if

$$\left\{\begin{array}{l}\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)=0\\ \mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right)=0,\end{array}\right.$$

which is equivalent to

$$\forall {u}_{k}\in {U}_{k}:\left\{\begin{array}{l}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}(x){\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{I}}}_{k+1})=0\\ {{\bf{I}}}_{{{\mathcal{F}}}_{k}}(x)(1-{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{I}}}_{k+1})-{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\ \in \ {{\mathcal{O}}}_{k+1}))=0.\end{array}\right.$$

In view of (A.2), then it follows that

$$\begin{array}{cccc}{{\mathcal{O}}}_{k}=\left\{x\in {{\mathbb{R}}}^{n}:\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{M}}}_{k}\left[{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left({x}_{k}\right){{\rm{B}}}_{k+1}\left({f}_{k}\left({x}_{k},{u}_{k},{\xi }_{k}\right)\right)| {x}_{k}=x\right]=0\right\}\\ =\left\{x\in {{\mathbb{R}}}^{n}:\quad \mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}{{\bf{I}}}_{{{\mathcal{F}}}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right)=1\right\}\\ ={\overline{{\mathcal{F}}}}_{k}\cup \left\{x\in {{\mathbb{R}}}^{n}:\quad \mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}\left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right)=1\right\}\\ ={\overline{{\mathcal{F}}}}_{k}\cup \left\{x\in {{\mathbb{R}}}^{n}:\quad \forall {u}_{k}\in {U}_{k}:\quad \left(x\right){\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right)=1\right\}.\end{array}$$
(A.9)

As can be observed from (A.9), for \({x}_{k}\in {{\mathcal{O}}}_{k}\) any admissible control uk ∈ Uk is optimal.

Items 2 and 4 of Theorem 2 are established.

Consider the Bellman equation (A.8). Let \(x\in {{\mathcal{B}}}_{k};\) in this case,

$$\begin{array}{ccccccc}{{\rm{B}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}\left\{{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right)\right.\\ \left.\times {{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\right\}\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}\left\{{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)\right.\\ +\left(1-{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)-{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right)\right)\\ \left.\times {{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\right\}\\ =\mathop{\rm{max}}\limits_{{u}_{k}\in {U}_{k}}\left\{{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)\left(1-{{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\right)\right.\\ \left.+\left(1-{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right)\right){{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right]\right\}.\end{array}$$
(A.10)

Take advantage of the well-known inequality

$$\mathop{\rm{min}}\limits_{i = \overline{1,n}}{z}_{i}\leqslant \mathop{\sum }\limits_{i = 1}^{n}{a}_{i}{z}_{i}\leqslant \mathop{\rm{max}}\limits_{i = \overline{1,n}}{z}_{i},\quad {a}_{1},\ldots ,{a}_{n}\geqslant 0,\quad \mathop{\sum }\limits_{i = 1}^{n}{a}_{i}=1.$$

Formally letting

$$\begin{array}{ccc}{a}_{1}={{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right],\\ {a}_{2}=1-{{\bf{M}}}_{k}\left[\left.{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right|{f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right],\\ {z}_{1}={\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right),\quad {z}_{2}=1-{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{O}}}_{k+1}\right),\end{array}$$

gives the following two-sided estimate for the right-hand side of the Bellman equation:

$$\mathop{\rm{min}}\limits_{i = \overline{1,2}}{z}_{i}\leqslant {{\bf{M}}}_{k}\left[{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\leqslant \mathop{\rm{max}}\limits_{i = \overline{1,2}}{z}_{i},x\in {{\mathcal{B}}}_{k}.$$

Due to the equality

$${\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{I}}}_{k+1})+{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{B}}}_{k+1})+{\bf{P}}({f}_{k}(x,{u}_{k},{\xi }_{k})\in {{\mathcal{O}}}_{k+1})=1,$$

z2 can be also represented as

$${z}_{2}={\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right).$$

Hence, z2z1, and

$${z}_{1}\leqslant {{\bf{M}}}_{k}\left[{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\leqslant {z}_{2}.$$

In accordance with items 1 and 2 of Theorem 2, the inclusions \({{\mathcal{I}}}_{k}\subseteq {{\mathcal{F}}}_{k}\) and \({\overline{{\mathcal{F}}}}_{k}\subseteq {{\mathcal{O}}}_{k}\) hold for all \(k=\overline{0,N}\). Consequently, \({{\mathcal{I}}}_{k}\cup {{\mathcal{B}}}_{k}\subseteq {{\mathcal{F}}}_{k}\), and then

$${\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{I}}}_{k+1}\right)+{\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{B}}}_{k+1}\right)\leqslant {\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{F}}}_{k+1}\right).$$

As a result,

$${{\bf{M}}}_{k}\left[{{\rm{B}}}_{k+1}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\right)\right]\leqslant {\bf{P}}\left({f}_{k}\left(x,{u}_{k},{\xi }_{k}\right)\in {{\mathcal{F}}}_{k+1}\right).$$

Thus, the system of inequalities (8) is valid. Taking the supremum over uk ∈ Uk in all sides of the inequalities finally yields (10). Items 6 and 7 of Theorem 2 are established.

The proof of Theorem 2 is complete.

Proof of Theorem 3. Introduce a system of hypotheses forming a complete group of incompatible events:

$$\left\{\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right\},\quad \left\{\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right\}.$$

Then the total probability formula gives the chain of equalities

$$\begin{array}{ccc}{P}_{\varphi }\left(\underline{u}\left(\cdot \right)\right)={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right)\\ ={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcap }\limits_{k=0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.11)

From the definition of the control \(\underline{u}\left(\cdot \right)\) and the properties of the set \({{\mathcal{I}}}_{k}\) (item 1 of Theorem 2) it follows that

$${\bf{P}}\left({\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right)=1\quad \,\text{for}\,\quad {\underline{x}}_{k}\in {{\mathcal{I}}}_{k},\quad k=\overline{0,N}.$$
(A.12)

Then, due to the inclusion \({{\mathcal{I}}}_{k}\subseteq {{\mathcal{F}}}_{k}\) holding for all \(k=\overline{1,N+1}\),

$${\bf{P}}\left({\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right)=1\quad \,\text{for}\,\quad {\underline{x}}_{k}\in {{\mathcal{I}}}_{k},\quad k=\overline{0,N},$$

and consequently

$${\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{\left.{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)=1.$$

In view of this equality, the expression (A.11) can be written as

$$\begin{array}{cc}{P}_{\varphi }\left(\underline{u}\left(\cdot \right)\right)={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.13)

Now introduce another system of hypotheses forming a complete group of incompatible events:

$$\left\{\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right\},\quad \left\{\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right\}.$$

Apply the total probability formula for the first term in the right-hand side of (A.13):

$$\begin{array}{cc}{\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{\left.{\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right\}\right|\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{\left.{\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.14)

Taking (A.12) into account, transform the right-hand side of (A.14) to obtain

$$\begin{array}{cc}{\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.15)

Substituting (A.15) into (A.13) yields

$$\begin{array}{ccc}{P}_{\varphi }\left(\underline{u}\left(\cdot \right)\right)={\bf{P}}\left(\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N-1}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.16)

Perform the analogous transformations for the first term in (A.16), introducing the systems of hypotheses

$$\left\{\mathop{\bigcap }\limits_{k = 0}^{l}\left\{{\underline{x}}_{k}\in {{\mathcal{I}}}_{k}\right\}\right\},\quad \left\{\mathop{\bigcup }\limits_{k = 0}^{l}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right\},\quad l=\overline{1,\ldots ,N-2},$$

to obtain the following expression for the value of the probabilistic criterion under the control \(\underline{u}\left(\cdot \right)\):

$$\begin{array}{ccc}{P}_{\varphi }\left(\underline{u}\left(\cdot \right)\right)={\bf{P}}\left({\underline{x}}_{1}\in {{\mathcal{I}}}_{1}\right)\\ +\mathop{\sum }\limits_{l=1}^{N-1}{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{l}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{l}\left\{{\underline{x}}_{k+1}\in {{\mathcal{I}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{l}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right)\\ +{\bf{P}}\left(\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right){\bf{P}}\left(\left.\mathop{\bigcap }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k+1}\in {{\mathcal{F}}}_{k+1}\right\}\right|\mathop{\bigcup }\limits_{k = 0}^{N}\left\{{\underline{x}}_{k}\notin {{\mathcal{I}}}_{k}\right\}\right).\end{array}$$
(A.17)

Note that the first term in (A.17) satisfies the chain of equalities

$${\bf{P}}\left({\underline{x}}_{1}\in {{\mathcal{I}}}_{1}\right)={\bf{P}}\left({f}_{0}\left(X,{\underline{u}}_{0},{\xi }_{0}\right)\in {{\mathcal{I}}}_{1}\right)={\underline{{\rm{B}}}}_{0}\left(X\right),$$

which implies the expression (14).

Item 1 of Theorem 3 is established.

For establishing item 3 of Theorem 3, it suffices to observe that for \({x}_{k}\in {{\mathcal{I}}}_{k}\), \({u}_{k}^{* }={\underline{u}}_{k}\) for all \(k=\overline{0,N}\). Following the same procedure as above, this equality can be used for deriving the expression (14) for the optimal-value function of the probabilistic criterion on the trajectories \({\left\{{x}_{k}^{* }\right\}}_{k = 1}^{N+1}\) of the closed loop system with the optimal control \({u}^{* }\left(\cdot \right)\).

Item 2 of Theorem 3 is established.

Item 3 of Theorem 3 directly follows from item 7 of Theorem 2 and item 1 of Theorem 3.

The proof of Theorem 3 is complete.

Proof of Lemma 1. Using item 1 of Theorem 2, write the isobell of level 1 of the Bellman function for k = N:

$${{\mathcal{I}}}_{N}={{\mathcal{F}}}_{N}\cap \left\{x\in {{\mathbb{R}}}^{2}:\exists u\in {U}_{N}:{\bf{P}}\left({\left\Vert \Omega \left({A}_{N}x+\left({A}_{N}^{\xi }x+{B}_{N}u\right){\xi }_{N}\right)\right\Vert }_{\infty }\leqslant \varphi \right)=1\right\}.$$

Since the random variable ξN has an unbounded support, the optimal control for k = N and \({x}_{N-1}\in {{\mathcal{I}}}_{N}\) is unique and given by \({u}_{N}^{* }=-{B}_{N}^{{\mathtt{T}}}{A}_{N}^{\xi }{x}_{N-1}\); moreover, the isobell of level 1 of the Bellman function has the form

$${{\mathcal{I}}}_{N}={{\mathcal{F}}}_{N}\cap \left\{x\in {{\mathbb{R}}}^{2}:{\left\Vert \Omega {A}_{N}x\right\Vert }_{\infty }\leqslant \varphi \right\}=\left\{x\in {{\mathbb{R}}}^{2}:{\rm{max}}\left\{{\left\Vert \Omega x\right\Vert }_{\infty },\left|{\beta }_{N}^{{\mathtt{T}}}x\right|\right\}\leqslant \varphi \right\}.$$

In accordance with item 2 of Theorem 2, for k = N the isobell of level 0 of the Bellman function is given by

$$\begin{array}{cc}{{\mathcal{O}}}_{N}={\overline{{\mathcal{F}}}}_{N}\cup \left\{x\in {{\mathbb{R}}}^{2}:\forall u\in {U}_{N}:{\bf{P}}\left({\left\Vert \Omega \left({A}_{N}x+\left({A}_{N}^{\xi }x+{B}_{N}u\right){\xi }_{N}\right)\right\Vert }_{\infty }>\varphi \right)=1\right\}\\ ={\overline{{\mathcal{F}}}}_{N}\cup \varnothing =\left\{x\in {{\mathbb{R}}}^{2}:{\left\Vert \Omega x\right\Vert }_{\infty }>\varphi \right\}.\end{array}$$

By analogy with step k = N, for k = N − 1 the isobell of level 1 can be written as

$$\begin{array}{lccc}{{\mathcal{I}}}_{N-1}={{\mathcal{F}}}_{N-1}\cap \left\{x\in {{\mathbb{R}}}^{2}:\ \exists u\in {U}_{N-1}:\right.\\ {\bf{P}}\left({\rm{max}}\left\{{\left\Vert \Omega \left({A}_{N-1}x+\left({A}_{N-1}^{\xi }x+{B}_{N-1}u\right){\xi }_{N-1}\right)\right\Vert }_{\infty },\right.\right.\\ \left.\left.\left.{\left\Vert \Omega {A}_{N}\left({A}_{N-1}x+\left({A}_{N-1}^{\xi }x+{B}_{N-1}u\right){\xi }_{N-1}\right)\right\Vert }_{\infty }\right\}\leqslant \varphi \right)=1\right\}\\ =\left\{x\in {{\mathbb{R}}}^{2}:max\left\{{\left\Vert \Omega x\right\Vert }_{\infty },\mathop{\rm{max}}\limits_{j = \overline{N-1,N}}\left|{\beta }_{j}^{{\mathtt{T}}}x\right|\right\}\leqslant \varphi \right\}.\end{array}$$

Note that, like in the case k = N, if \({x}_{N-1}\in {{\mathcal{I}}}_{N-1}\), then

$${u}_{N-1}^{* }=-{B}_{N-1}^{{\mathtt{T}}}{A}_{N-1}^{\xi }{x}_{N-1}$$

and the isobell of level 0 of the Bellman function has the form

$$\begin{array}{l}{{\mathcal{O}}}_{N-1}={\overline{{\mathcal{F}}}}_{N-1}\cup \left\{x\in {{\mathbb{R}}}^{2}:\right.\\ \left.\forall u\in {U}_{N-1}:{\bf{P}}\left({\left\Vert \Omega \left({A}_{N-1}x+\left({A}_{N-1}^{\xi }x+{B}_{N-1}u\right){\xi }_{N-1}\right)\right\Vert }_{\infty }>\varphi \right)=1\right\}\\ ={\overline{{\mathcal{F}}}}_{N-1}\cup \varnothing =\left\{x\in {{\mathbb{R}}}^{2}:{\left\Vert \Omega x\right\Vert }_{\infty }>\varphi \right\}.\end{array}$$

These considerations are continued further by induction, and the conclusion follows.

The proof of Lemma 1 is complete.

Proof of Lemma 2. Perform a series of transformations for the right-hand side of the expression (20) as follows:

$$\begin{array}{l}{\underline{{\rm{B}}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{u}{\bf{P}}\left({\rm{max}}\left\{\dot{\omega }\left|{e}_{2}^{{\mathtt{T}}}\left({A}_{k}x+\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\right)\right|,\right.\right.\\ \left.\left.\mathop{\rm{max}}\limits_{l = \overline{k,N}}\omega \left|{\beta }_{l+1}^{{\mathtt{T}}}\left({A}_{k}x+\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\right)\right|\right\}\leqslant \varphi \right)\\ ={\bf{P}}\left(\mathop{\bigcap }\limits_{l = k}^{N}\left\{\omega \left|{\beta }_{l+1}^{{\mathtt{T}}}\left({A}_{k}x+\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\right)\right|\leqslant \varphi \right\}\right.\\ \left.\cap \left\{\dot{\omega }\left|{e}_{2}^{{\mathtt{T}}}\left({A}_{k}x+\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\right)\right|\leqslant \varphi \right\}\right)\\ ={\bf{P}}\left(\mathop{\bigcap }\limits_{l = k}^{N}\left\{\frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\leqslant {e}_{2}^{{\mathtt{T}}}\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\leqslant \frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\right.\\ \left.\cap \left\{-\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\leqslant {e}_{2}^{{\mathtt{T}}}\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\leqslant \varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\right\}\right).\end{array}$$

Introduce the change of variables for the control \({\tilde{u}}_{k}={e}_{2}^{{\mathtt{T}}}\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right)\), and denote by \({\mathop \xi \limits^\circ _k} = {\xi _k} - {m_\xi }\) the centered random variable. Continue transformations for the right-hand side of the expression (20):

$$\begin{array}{cccccccccccc}{\bf{P}}\left(\mathop{\bigcap }\limits_{l = k}^{N}\left\{\frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\leqslant {\tilde{u}}_{k}{\xi }_{k}\leqslant \frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\right.\\ \left.\cap \left\{-\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\leqslant {\tilde{u}}_{k}{\xi }_{k}\leqslant \varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\right\}\right)\\ ={\bf{P}}\left(\mathop{\bigcap }\limits_{l = k}^{N}\left\{\frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\leqslant {\tilde{u}}_{k}\left({\xi }_{k}^{\circ }+{m}_{\xi }\right)\leqslant \frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\right.\\ \left.\cap \left\{-\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\leqslant {\tilde{u}}_{k}\left({\xi }_{k}^{\circ }+{m}_{\xi }\right)\leqslant \varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x\right\}\right)\\ ={\bf{P}}\left(\mathop{\bigcap }\limits_{l = k}^{N}\left\{\frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\leqslant \frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\right.\\ \left.\cap \left\{\frac{-\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }}\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\leqslant \frac{\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }}\right\}\right)\\ ={\bf{P}}\left({\rm{max}}\left\{\frac{-\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }},\mathop{\rm{max}}\limits_{l = \overline{k,N}}\frac{-\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\right.\\ \left.\leqslant {\rm{min}}\left\{\frac{\varphi {\dot{\omega }}^{-1}-{e}_{2}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }},\mathop{\rm{min}}\limits_{l = \overline{k,N}}\frac{\varphi {\omega }^{-1}-{\beta }_{l+1}^{{\mathtt{T}}}{A}_{k}x}{{m}_{\xi }{e}_{2}^{{\mathtt{T}}}{\beta }_{l+1}}\right\}\right)\\ ={\bf{P}}\left({\underline{\varphi }}_{k}\left(x\right)\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\leqslant {\overline{\varphi }}_{k}\left(x\right)\right)\\ ={\bf{P}}\left(-\frac{{\overline{\varphi }}_{k}\left(x\right)-{\underline{\varphi }}_{k}\left(x\right)}{2}+\frac{{\overline{\varphi }}_{k}\left(x\right)+{\overline{\varphi }}_{k}\left(x\right)}{2}\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\right.\\ \left.\leqslant \frac{{\overline{\varphi }}_{k}\left(x\right)-{\underline{\varphi }}_{k}\left(x\right)}{2}+\frac{{\overline{\varphi }}_{k}\left(x\right)+{\overline{\varphi }}_{k}\left(x\right)}{2}\right)\\ ={\bf{P}}\left(-{r}_{k}\left(x\right)-{c}_{k}\left(x\right)\leqslant {\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\leqslant {r}_{k}\left(x\right)-{c}_{k}\left(x\right)\right).\end{array}$$

For the sake of convenience, introduce the notations \({\eta _k} = m_\xi ^{ - 1}{\mathop \xi \limits^\circ _k}\), \({\eta }_{k} \sim {\mathcal{N}}\left(0,{\sigma }_{\eta }^{2}\right)\), and \({\sigma }_{\eta }^{2}={\sigma }_{\xi }^{2}{m}_{\xi }^{-2}\). In view of the transformations and notations presented above, the expression (20) can be written as

$${\underline{{\mathcal{B}}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{\tilde{u}}_{k}}{\bf{P}}\left(\left|{c}_{k}\left(x\right)+{\tilde{u}}_{k}\left(1+{\eta }_{k}\right)\right|\leqslant {r}_{k}\left(x\right)\right).$$
(A.18)

The solution of the stochastic programming problem in the right-hand side of (A.18) is known up to the parameters \({c}_{k}\left(x\right)\) and \({r}_{k}\left(x\right);\) see [2, 15]. Under the condition \(x\in {{\mathcal{B}}}_{k}\) this solution has the form

$${\tilde{u}}_{k}^{* }=-2{c}_{k}\left(x\right){\left(1+\sqrt{1+2{\sigma }_{\eta }^{2}\mathrm{ln}\,\left(\frac{\left|{c}_{k}\left(x\right)\right|+{r}_{k}\left(x\right)}{\left|{c}_{k}\left(x\right)\right|-{r}_{k}\left(x\right)}\right)}\right)}^{-1}.$$
(A.19)

With the change of variables for \(\underline{u}\), this finally gives (22).

Items 1 and 2 of Lemma 2 are established.

For establishing items 3 and 4 of Lemma 2, it suffices to observe that, by analogy with the transformations used for proving items 1 and 2 of this lemma, the Bellman function (21) can be estimated from above as

$$\begin{array}{ccc}{\overline{{\rm{B}}}}_{k}\left(x\right)=\mathop{\rm{max}}\limits_{{u}_{k}}{\bf{P}}\left(\dot{\omega }\left|{e}_{2}^{{\mathtt{T}}}\left({A}_{k}x+\left({A}_{k}^{\xi }x+{B}_{k}{u}_{k}\right){\xi }_{k}\right)\right|\leqslant \varphi \right)\\ =\mathop{\rm{max}}\limits_{{\tilde{u}}_{k}}{\bf{P}}\left(\left|{e}_{2}^{{\mathtt{T}}}{A}_{k}{m}_{\xi }^{-1}x+{\tilde{u}}_{k}\left({m}_{\xi }^{-1}{\xi }_{k}^{\circ }+1\right)\right|\leqslant \varphi {\dot{\omega }}^{-1}{m}_{\xi }^{-1}\right)\\ =\mathop{\rm{max}}\limits_{{\tilde{u}}_{k}}{\bf{P}}\left(\left|{e}_{2}^{{\mathtt{T}}}{A}_{k}{m}_{\xi }^{-1}x+{\tilde{u}}_{k}\left(1+{\eta }_{k}\right)\right|\leqslant \varphi {\dot{\omega }}^{-1}{m}_{\xi }^{-1}\right).\end{array}$$
(A.20)

The stochastic programming problem in the right-hand side of (A.20) coincides, up to the parameters, with the stochastic programming problem in the right-hand side of (A.18). The same considerations as in the proof of items 1 and 2 of Lemma 2 finally yield (24) and (25).

The proof of Lemma 2 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azanov, V., Tarasov, A. Probabilistic Criterion-Based Optimal Retention of Trajectories of a Discrete-Time Stochastic System in a Given Tube: Bilateral Estimation of the Bellman Function. Autom Remote Control 81, 1819–1839 (2020). https://doi.org/10.1134/S0005117920100033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920100033

Keywords

Navigation