Skip to main content
Log in

Fungal Hydrophobins: Biosynthesis, Properties, and Possibilities of Application in Biotechnology (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The current information about hydrophobins, low molecular weight proteins synthesized by filamentous fungi, which are one of the strongest cellular biosurfactants, is summarized. The mechanism of biosynthesis of hydrophobins, the chemical structures and spectrum of its natural and synthetic isoforms, biological activity, and role in the regulation of vital processes of producers are presented. The potential for using hydrophobins in biotechnology has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Wosten, H.A., Schuren, F.H., and Wessels, J.G., EMBO J., 1994, vol. 13, no. 24, pp. 5848–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lumsdon, S.O., Green, J., and Stieglitz, B., Colloids Surf., B, 2005, vol. 44, no. 4, pp. 172–178. https://doi.org/10.1016/j.colsurfb.2005.06.012

    Article  CAS  Google Scholar 

  3. Kallio, J.M., Linder, M.B., and Rouvinen, J., J. Biol. Chem., 2007, vol. 282, no. 39, pp. 28733–28739. https://doi.org/10.1074/jbc.M704238200

    Article  CAS  PubMed  Google Scholar 

  4. Dokouhaki, M., Hung, A., Kasapis, S., and Gras, S.L., Trends Food Sci. Technol., 2021, vol. 111, pp. 378–387. https://doi.org/10.1016/j.tifs.2021.03.001

    Article  CAS  Google Scholar 

  5. Lo, V.C., Ren, Q., Pham, C.L.L., Morris, V.K., Kwan, A.H., and Sunde, M., Nanomaterials, 2014, vol. 4, no. 3, pp. 827–843. https://doi.org/10.3390/nano4030827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gandier, J.A. and Master, E.R., Microorganisms, 2018, vol. 6, no. 1, pp. 3–23. https://doi.org/10.3390/microorganisms6010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wosten, H.A.B., Annu. Rev. Microbiol., 2001, vol. 55, no. 1, pp. 625–646. https://doi.org/10.1146/annurev.micro.55.1.625

    Article  CAS  PubMed  Google Scholar 

  8. Gandier, J.A., Langelaan, D.N., Won, A., O’Donnell, K., Grondin, J.L., Spencer, H.L., Wong, P., Tillier, E., Yip, C., Smith, S.P., and Master, E.R., Sci. Rep., 2017, vol. 7, no. 45863, pp. 1–9. https://doi.org/10.1038/srep45863

    Article  CAS  Google Scholar 

  9. Jensen, B.G., Andersen, M.R., Pedersen, M.H., Frisvad, J.C., and Sondergaard, I.B., BMC Res. Notes, 2010, vol. 3, no. 1, pp. 1–6. https://doi.org/10.1186/1756-0500-3-344

    Article  CAS  Google Scholar 

  10. Ball, S.R., Kwan, A.H., and Sunde, M., in The Fungal Cell Wall: An Armour and a Weapon for Human Fungal Pathogens, Latgé, J.-P., Ed., Curr. Top. Microbiol. Immunol., 2020, vol. 425, pp. 29–51.

  11. Morris, V.K., Kwan, A.H., and Sunde, M., J. Mol. Biol., 2013, vol. 425, no. 2, pp. 244–256. https://doi.org/10.1016/j.jmb.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  12. Pham, C.L.L., Rey, A., Lo, V., Soules, M., Ren, Q., Meisl, G., Knowles, T.P.S., Kwan, A.H., and Sunde, M., Sci. Rep., 2016, vol. 6, no. 25288, pp. 1–16. https://doi.org/10.1038/srep25288

    Article  CAS  Google Scholar 

  13. Hektor, H.J. and Scholtmeijer, K., Curr. Opin. Biotechnol., 2005, vol. 16, no. 4, pp. 434–439. https://doi.org/10.1016/j.copbio.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  14. Szilvay, G.R., Self-Assembly of Hydrophobin Proteins from the Fungus Trichoderma Reesei, Linder, M., Ed., Finland: VTT Publications, 2007.

    Google Scholar 

  15. Tanaka, T., Terauchi, Y., Yoshimi, A., and Abe, K., Microorganisms, 2022, vol. 10, no. 8, pp. 1498–1522. https://doi.org/10.3390/microorganisms10081498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kisko, K., Szilvay, G.R., Vainio, U., Linder, M.B., and Serimaa, R., Biophys. J., 2008, vol. 94, no. 1, pp. 198–206. https://doi.org/10.1529/biophysj.107.112359

    Article  CAS  PubMed  Google Scholar 

  17. Linder, M.B., Curr. Opin. Colloid Interface Sci., 2009, vol. 14, no. 5, pp. 356–363. https://doi.org/10.1016/j.cocis.2009.04.001

    Article  CAS  Google Scholar 

  18. Scholtmeijer, K., Janssen, M., Gerssen, B., de Vocht, M.L., van Leeuwen, B.M., van Kooten, T.G., Wosten, H.A.B., and Wessels, J.G.H., Appl. Environ. Microbiol., 2002, vol. 68, no. 3, pp. 1367–1373. https://doi.org/10.1128/AEM.68.3.1367-1373.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vereman, J., Thysens, T., Weiland, F., Impe, J.V., Derdelinckx, G., and de Voorde, I.V., Proc. Biochem. Soc., 2023, vol. 130, pp. 455–463. https://doi.org/10.1016/j.procbio.2023.05.008

    Article  CAS  Google Scholar 

  20. De Groot, P.W.J., Roeven, R.T.P., van Griencven, L.J.L.D., Visser, J., and Schaap, P.J., Microbiology, 1999, vol. 145, no. 5, pp. 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  21. Lugones, L.G., Wos, H.A.B., and Wessels, J.G.H., Microbiology, 1998, vol. 144, no. 8, pp. 2345–2353. https://doi.org/10.1099/00221287-144-8-2345

    Article  CAS  PubMed  Google Scholar 

  22. Valsecchi, I., Dupres, V., Stephen-Victor, E., Guijarro, J.I., Gibbons, J., Beau, R., Bayry, J., Coppee, J.-Y., Lafont, F., Latge, J.-P., and Beauvais, A., J. Fungi, 2017, vol. 4, no. 1, pp. 2–20. https://doi.org/10.3390/jof4010002

    Article  CAS  Google Scholar 

  23. Littlejohn, K.A., Hooley, P., and Cox, P.W., Food Hydrocolloids, 2012, vol. 27, no. 2, pp. 503–516. https://doi.org/10.1016/j.foodhyd.2011.08.018

    Article  CAS  Google Scholar 

  24. Winandy, L., Hilpert, F., Schlebusch, O., and Fisher, R., Sci. Rep., 2018, vol. 8, no. 12033, pp. 1–11. https://doi.org/10.1038/s41598-018-29749-0

    Article  CAS  Google Scholar 

  25. Ahn, S.O., Lim, H.-D., You, S.-H., Cheong, D.-E., and Kim, G.-J., Int. J. Mol. Sci., 2021, vol. 22, no. 7843, pp. 1–11. https://doi.org/10.3390/ijms22157843

    Article  CAS  Google Scholar 

  26. Terauchi, Y., Nagayama, M., Tanaka, T., Tanabe, H., Yoshimi, A., Nanatani, K., Yabu, H., Arita, T., Higuchi, T., Kameda, T., and Abe, K., Appl. Environ. Microbiol., 2022, vol. 88, p. e0208721. P. 1-21. https://doi.org/10.1128/AEM.02087-21

  27. Moonjely, S., Keyhani, N.O., and Bidochka, M.J., Microbiology, 2018, vol. 164, no. 4, pp. 517–528. https://doi.org/10.1099/mic.0.000644

    Article  CAS  PubMed  Google Scholar 

  28. Lacroix, H. and Spanu, P.D., Appl. Environ. Microbiol., 2009, vol. 75, no. 2, pp. 542–546. https://doi.org/10.1128/AEM.01816-08

    Article  CAS  PubMed  Google Scholar 

  29. Mesarich, C.H., Okmen, B., Rovenich, H., Griffiths, S.A., Wang, C., Jashni, M.K., Mihajlovski, A., Collemare, J., Hunziker, L., Deng, C.H., van der Burgt, A., Beenen, H.G., Templeton, M.D., Bradshaw, R.E., and de Wit, P.J.G.M., Mol. Plant–Microbe Interact., 2018, vol. 31, no. 1, pp. 145–162. https://doi.org/10.1094/MPMI-05-17-0114-FI

    Article  PubMed  Google Scholar 

  30. Weichel, M., Schmid-Grendelmeier, P., Rhyner, C., Achatz, G., Blaser, K., and Crameri, R., Clin. Exp. Allergy, 2003, vol. 33, no. 1, pp. 72–77. https://doi.org/10.1046/j.1365-2222.2003.01574.x

    Article  CAS  PubMed  Google Scholar 

  31. Turgut, B.A. and Ortucu, S., Prep. Biochem. Biotechnol., 2023, vol. 53, no. 10. https://doi.org/10.1080/10826068.2023.2201930

  32. De Vries, O.M., Moore, S., Arntz, S., Wessels, J.G., and Tudzynski, P., Eur. J. Biochem., 1999, vol. 262, no. 2, pp. 377–385. https://doi.org/10.1046/j.1432-1327.1999.00387.x

    Article  CAS  PubMed  Google Scholar 

  33. Mey, G., Correia, T., Oeser, B., Kershaw, M.J., Garre, V., Arntz, C., Talbot, N.J., and Tudzynski, P., Mol. Plant Pathol., 2003, vol. 4, no. 1, pp. 31–41. https://doi.org/10.1046/j.1364-3703.2003.00138.x

    Article  CAS  PubMed  Google Scholar 

  34. Ásgeirsdóttir, S.A., Halsall, J.R., and Casselton, L.A., Fungal Genet. Biol., 1997, vol. 22, no. 1, pp. 54–63. https://doi.org/10.1006/fgbi.1997.0992

    Article  PubMed  Google Scholar 

  35. Li, X., Wang, F., Xu, Y., Liu, G., and Dong, C., Int. J. Mol. Sci., 2021, vol. 22, no. 2, pp. 643–660. https://doi.org/10.3390/ijms22020643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. So, K.K. and Kim, D.H., Mycobiology, 2017, vol. 45, no. 4, pp. 362–369. https://doi.org/10.5941/MYCO.2017.45.4.362

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trembley, M.L., Ringli, C., and Honegger, R., New Phytol., 2002, vol. 154, no. 1, pp. 185–195. https://doi.org/10.1046/j.1469-8137.2002.00360.x

    Article  CAS  Google Scholar 

  38. Kim, H.I., Lee, C.S., and Park, Y.J., Mycoscience, 2016, vol. 57, no. 5, pp. 320–325. https://doi.org/10.1016/j.myc.2016.04.004

    Article  Google Scholar 

  39. Stubner, M., Lutterschmid, G., Vogel, R.F., and Niessen, L., Int. J. Food Microbiol., 2010, vol. 141, nos 1-2, pp. 110–115. https://doi.org/10.1016/j.ijfoodmicro.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Zapf, M.W., Theisen, S., Vogel, R.F., and Niessen, L., J. Inst. Brewing, 2006, vol. 112, no. 3, pp. 237–245. https://doi.org/10.1002/j.2050-0416.2006.tb00719.x

    Article  CAS  Google Scholar 

  41. Quarantin, A., Hadeler, B., Kroger, C., Schafer, W., Favaron, F., Sella, L., and Martinez-Rocha, A.L., Front. Microbiol., 2019, vol. 10, pp. 751–770. https://doi.org/10.3389/fmicb.2019.00751

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sarlin, T., Kivioja, T., Kalkkinen, N., Linder, M.B., and Nakari-Setala, T., J. Basic Microbiol., 2012, vol. 52, no. 2, pp. 184–194. https://doi.org/10.1002/jobm.201100053

    Article  CAS  PubMed  Google Scholar 

  43. Minenko, E., Vogel, R.F., and Niessen, L., Fungal Biol., 2014, vol. 118, no. 4, pp. 385–393. https://doi.org/10.1016/j.funbio.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  44. Niu, C., Payne, G.A., and Woloshuk, C.P., BMC Microbiol., 2015, vol. 15, no. 1, pp. 1–11. https://doi.org/10.1186/s12866-015-0427-3

    Article  CAS  Google Scholar 

  45. Song, D., Gao, Z., Zhao, L., Wang, X., Xu, H., Bai, Y., Zhang, X., Linder, M.B., Feng, H., and Qiao, M., Protein Expression Purif., 2016, vol. 128, pp. 22–28. https://doi.org/10.1016/j.pep.2016.07.014

    Article  CAS  Google Scholar 

  46. Yang, J., Ge, L., Song, B., Ma, Z., Yang, X., Wang, B., Dai, Y., Xu, H., and Qiao, M., Front. Microbiol., 2022, vol. 13, no. 990231, pp. 1–13. https://doi.org/10.3389/fmicb.2022.990231

    Article  CAS  Google Scholar 

  47. Ma, Z., Song, B., Yu, J., Yang, Z., Han, Z., Yang, J., Wang, B., Song, D., Xu, H., and Qiao, M., Colloids Surf., A, 2023, vol. 656, no. 130344, pp. 1–4. https://doi.org/10.1016/j.colsurfa.2022.130344

    Article  CAS  Google Scholar 

  48. Kim, S., Ahn, I.P., Rho, H.S., and Lee, Y.H., Mol. Microbiol., 2005, vol. 57, no. 5, pp. 1224–1237. https://doi.org/10.1111/j.1365-2958.2005.04750.x

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, Z.Y., Ligoxygakis, P., and Xia, Y.X., Int. J. Biol. Macromol., 2020, vol. 165, pp. 1303–1311. https://doi.org/10.1016/j.ijbiomac.2020.09.222

    Article  CAS  PubMed  Google Scholar 

  50. Mackay, J.P., Matthews, J.M., Winefield, R.D., Mackay, L.G., Haverkamp, R.G., and Templeton, M.D., Structure, 2001, vol. 9, no. 2, pp. 83–91. https://doi.org/10.1016/s0969-2126(00)00559-1

    Article  CAS  PubMed  Google Scholar 

  51. Ren, Q., Kwan, A.H., and Sunde, M., Proteins, 2014, vol. 82, no. 6, pp. 990–1003. https://doi.org/10.1002/prot.24473

    Article  CAS  PubMed  Google Scholar 

  52. Temple, B. and Horgen, P.A., Mycologia, 2000, vol. 92, no. 1, pp. 1–9. https://doi.org/10.2307/3761443

    Article  CAS  Google Scholar 

  53. Zelena, K., Takenberg, M., Lunkenbein, S., Woche, S.K., Nimtz, M., and Berger, R.G., Biotechnol. Appl. Biochem., 2013, vol. 60, no. 2, pp. 147–154. https://doi.org/10.1002/bab.1077

    Article  CAS  PubMed  Google Scholar 

  54. Vigueras, G., Shirai, K., Hernandez-Guerrero, M., Morales, M., and Revah, S., Proc. Biochem. Soc., 2014, vol. 49, no. 10, pp. 1606–1611. https://doi.org/10.1016/j.procbio.2014.06.015

    Article  CAS  Google Scholar 

  55. Albuquerque, P., Kyaw, C.M., Saldanha, R.R., Brigido, M.M., Felipe, M.S.S., and Silva-Pereira, I., Fungal Genet. Biol., 2004, vol. 41, no. 5, pp. 510–520. https://doi.org/10.1016/j.fgb.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  56. Tagu, D., de Bellis, R., Balestrini, R., de Vries, O.M.H., Piccoli, G., Stocchi, V., Bonfante, P., and Martin, F., New Phytol., 2001, vol. 149, no. 1, pp. 127–135. https://doi.org/10.1046/j.1469-8137.2001.00009.x

    Article  CAS  PubMed  Google Scholar 

  57. Acioli-Santos, B., Sebastiana, M., Pessoa, F., Sousa, L., Figueiredo, A., Fortes, A.M., Balde, A., Maia, L.C., and Pais, M.S., Curr. Microbiol., 2008, vol. 57, no. 6, pp. 620–625. https://doi.org/10.1007/s00284-008-9253-2

    Article  CAS  PubMed  Google Scholar 

  58. Rafeeq, C.M., Vaishnav, A.B., and Ali, P.P.M., Protein Expression Purif., 2021, vol. 182, no. 105834, pp. 1–6. https://doi.org/10.1016/j.pep.2021.105834

    Article  CAS  Google Scholar 

  59. Zhang, R.Y., Hu, D.D., Gu, J.G., Zhang, J.X., Goodwin, P.H., and Hu, Q.X., Eur. J. Plant Pathol., 2015, vol. 143, pp. 823–831. https://doi.org/10.1007/s10658-015-0734-4

    Article  CAS  Google Scholar 

  60. Xu, D., Wang, Y., Keerio, A.A., and Ma, A., Microbiol. Res., vol. 247, no. 126723, pp. 1–14. https://doi.org/10.1016/j.micres.2021.126723

  61. Kulkarni, S.S., Nene, S.N., and Joshi, K.S., Protein Expression Purif., 2022, vol. 195-196, no. 106095. https://doi.org/10.1016/j.pep.2022.106095

  62. Van Wetter, M.A., Wosten, H.A., and Wessels, J.G., Mol. Microbiol., 2000, vol. 36, no. 1, pp. 201–210. https://doi.org/10.1046/j.1365-2958.2000.01848.x

    Article  CAS  PubMed  Google Scholar 

  63. Askolin, S., Linder, M., Scholtmeijer, K., Tenkanen, M., Penttila, M., de Vocht, M.L., and Wosten, H.A.B., Biomacromolecules, 2006, vol. 7, no. 4, pp. 1295–1301. https://doi.org/10.1021/bm050676s

    Article  CAS  PubMed  Google Scholar 

  64. Kuvarina, A.E., Rogozhin, E.A., Sykonnikov, M.A., Timofeeva, A.V., Serebryakova, M.V., Fedorova, N.V., Kokaeva, L.Y., Efimenko, T.A., Georgieva, M.L., and Sadykova, V.S., J. Fungi, 2022, vol. 8, no. 7, pp. 1–11. https://doi.org/10.3390/jof8070659

    Article  CAS  Google Scholar 

  65. Huang, Y., Mijiti, G., Wang, Z., Yu, W., Fan, H., Zhang, R., and Liu, Z., Microbiol. Res., 2015, vol. 171, pp. 8–20. https://doi.org/10.1016/j.micres.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  66. Seidl-Seiboth, V., Gruber, S., Sezerman, U., Schwecke, T., Albayrak, A., Neuhof, T., von Dohren, H., Baker, S.E., and Kubicek, C.P., J. Mol. Evol., 2011, vol. 72, pp. 339–351. https://doi.org/10.1007/s00239-011-9438-3

    Article  CAS  PubMed  Google Scholar 

  67. Puglisi, I., Faedda, R., Sanzaro, V., Lo, PieroA.R., Petrone, G., and Cacciola, S.O., Gene, 2012, vol. 506, no. 2, pp. 325–330. https://doi.org/10.1016/j.gene.2012.06.091

    Article  CAS  PubMed  Google Scholar 

  68. He, R., Li, C., Feng, J., and Zhang, D., FEMS Microbiol. Lett., 2017, vol. 364, no. 8, pp. 1–21. https://doi.org/10.1093/femsle/fnw297

    Article  CAS  Google Scholar 

  69. Alamprese, C., Rollini, M., Musatti, A., Ferranti, P., and Barbiroli, A., LWT, 2022, vol. 157, no. 113060, pp. 1–7. https://doi.org/10.1016/j.lwt.2021.113060

    Article  CAS  Google Scholar 

  70. Mankel, A., Krause, K., and Kothe, E., Appl. Environ. Microbiol., 2002, vol. 68, no. 3, pp. 1408–1413. https://doi.org/10.1128/AEM.68.3.1408-1413.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sammer, D., Krause, K., Gube, M., Wagner, K., and Kothe, E., PLoS One, 2016, vol. 11, no. e0167773, pp. 1–20. https://doi.org/10.1371/journal.pone.0167773

    Article  CAS  Google Scholar 

  72. Scherrer, S., de Vries, O.M.H., Dudler, R., Wessels, J.G.H., and Honegger, R., Fungal Genet. Biol., 2000, vol. 30, no. 1, pp. 81–93. https://doi.org/10.1006/fgbi.2000.1205

    Article  CAS  PubMed  Google Scholar 

  73. Kershaw, M.J. and Talbot, N.J., Fungal Genet. Biol., 1998, vol. 23, no. 1, pp. 18–33. https://doi.org/10.1006/fgbi.1997.1022

    Article  CAS  PubMed  Google Scholar 

  74. Mgbeahuruike, A.C., Kovalchuk, A., and Asiegbu, F.O., Mycologia, 2013, vol. 105, no. 6, pp. 1471–1478. https://doi.org/10.3852/13-077

    Article  CAS  PubMed  Google Scholar 

  75. Bouqellah, N.A. and Farag, P.F., Microorganisms, 2023, vol. 11, no. 2632, pp. 1–19. https://doi.org/10.3390/microorganisms11112632

    Article  CAS  Google Scholar 

  76. Ruocco, M., Lanzuise, S., Lombardi, N., Woo, S.L., Vinale, F., Marra, R., Varlese, R., Manganiello, G., Pascale, A., Scala, V., Turra, D., Scala, F., and Lorito, M., Mol. Plant–Microbe Interact, 2015, vol. 28, no. 2, pp. 167–179. https://doi.org/10.1094/MPMI-07-14-0194-R

    Article  CAS  PubMed  Google Scholar 

  77. Kazmierczak, P., Kim, D.H., Turina, M., and Van Alfen, N.K., Eukaryot. Cell, 2005, vol. 4, no. 5, pp. 931–936. https://doi.org/10.1128/EC.4.5.931-936.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gallo, M., Luti, S., Baroni, F., Baccelli, I., Cilli, E.M., Cicchi, C., Leri, M., Spisni, A., Pertinhez, T.A., and Pazzagli, L., Int. J. Mol. Sci., 2023, vol. 24, no. 2251, pp. 1–18. https://doi.org/10.3390/ijms24032251

    Article  CAS  Google Scholar 

  79. Buchanan, J.A., Varghese, N.R., Johnston, C.L., and Sunde, M., J. Mol. Biol., 2023, vol. 435, no. 167919, pp. 1–22. https://doi.org/10.1016/j.jmb.2022.167919

    Article  CAS  Google Scholar 

  80. Kashyap, V.K., Mishra, A., Bordoloi, S., Varma, A., and Joshi, N.C., Mycoses, 2023, vol. 66, no. 9, pp. 737–754. https://doi.org/10.1111/myc.13619

    Article  CAS  PubMed  Google Scholar 

  81. Latge, J.-P., Fungal Biol., 2023, vol. 127, nos. 7–8, pp. 1259–1266. https://doi.org/10.1016/j.funbio.2023.05.001

    Article  CAS  PubMed  Google Scholar 

  82. Cai, F., Gao, R., Zhao, Z., Ding, M., Jiang, S., Yagtu, C., Zhu, H., Zhang, J., Ebner, T., Mayrhofer-Reinhartshuber, M., Kainz, P., Chenthamara, K., Akcapinar, G.B., Shen, Q., and Druzhinina, I.S., ISME J., 2020, vol. 14, no. 10, pp. 2610–2624. https://doi.org/10.1038/s41396-020-0709-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luciano-Rosario, D., Eagan, J.L., Aryal, N., Dominguez, E.G., Hull, C.M., and Keller, N.P., mBio, 2022, vol. 13, no. e0275422, pp. 1–12. https://doi.org/10.1128/mbio.02754-22

    Article  CAS  Google Scholar 

  84. Kulkarni, S., Nene, S., and Joshi, K., Proc. Biochem. Soc., 2017, vol. 61, pp. 1–11. https://doi.org/10.1016/j.procbio.2017.06.012

    Article  CAS  Google Scholar 

  85. Stanzione, I., Pitocchi, R., Pennacchio, A., Cicatiello, P., Piscitelli, A., and Giardina, P., Front. Mol. Biosci., 2022, vol. 9, no. 959166, pp. 1–9. https://doi.org/10.3389/fmolb.2022.959166

    Article  CAS  Google Scholar 

  86. Kirkland, B.H. and Keyhani, N.O., J. Ind. Microbiol. Biotechnol., 2011, vol. 38, no. 2, pp. 327–335. https://doi.org/10.1007/s10295-010-0777-7

    Article  CAS  PubMed  Google Scholar 

  87. Rieder, A., Ladnorg, T., Woll, C., Obst, U., Fischer, R., and Schwartz, T., Biofouling, 2011, vol. 27, no. 10, pp. 1073–1085. https://doi.org/10.1080/08927014.2011.631168

    Article  CAS  PubMed  Google Scholar 

  88. Janssen, M.I., Leeuwen, M.B.M., van Kooten, T.G., Vries, J., Dijkhuizen, L., and Wosten, H.A.B., Biomaterials, 2004, vol. 25, no. 14, pp. 2731–2739. https://doi.org/10.1016/j.biomaterials.2003.09.060

    Article  CAS  PubMed  Google Scholar 

  89. Bimbo, L.M., Makila, E., Raula, J., Laaksonen, T., Laaksonen, P., Strommer, K., Kauppinen, E.I., Salonen, J., Linder, M.B., Hirvonen, J., and Santos, H.A., Biomaterials, 2011, vol. 32, no. 34, pp. 9089–9099. https://doi.org/10.1016/j.biomaterials.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  90. Linder, M.B., Szilvay, G.R., Nakari-Setala, T., and Penttila, M.E., FEMS Microbiol. Rev., 2005, vol. 29, no. 5, pp. 877–896. https://doi.org/10.1016/j.femsre.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  91. Khalesi, M., Gebruers, K., and Derdelinckx, G., Protein J., 2015, vol. 34, no. 4, pp. 243–255. https://doi.org/10.1007/s10930-015-9621-2

    Article  CAS  PubMed  Google Scholar 

  92. Chakarova, S.D. and Carlsson, A.E., Phys. Rev. E, 2004, vol. 69, no. 021907, pp. 1–9. https://doi.org/10.1103/PhysRevE.69.021907

    Article  CAS  Google Scholar 

  93. Scognamiglio, V., Arduini, F., Palleschi, G., and Rea, G., TRAC—Trends Anal. Chem., 2014, vol. 62, pp. 1–10. https://doi.org/10.1016/j.trac.2014.07.007

    Article  CAS  Google Scholar 

  94. Tao, J., Chang, Y., Liang, J., Duan, X., Pang, W., Wang, Y., and Wang, Z., Appl. Phys. Lett., 2019, vol. 115, no. 163502, pp. 1–5. https://doi.org/10.1063/1.5124525

    Article  CAS  Google Scholar 

  95. Fitzgerald, J.E., Bui, E.T.H., Simon, N.M., and Fenniri, H., Trends Biotechnol., 2017, vol. 35, pp. 33–42. https://doi.org/10.1016/j.tibtech.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  96. Piscitelli, A., Pennacchio, A., Longobardi, S., Velotta, R., and Giardina, P., Biotechnol. Bioeng., 2017, vol. 114, pp. 46–52. https://doi.org/10.1002/bit.26049

    Article  CAS  PubMed  Google Scholar 

  97. Barani, M., Mirzaei, M., Torkzadeh-Mahani, M., Lohrasbi-Nejad, A., and Nematollahi, M.H., Mater. Sci. Eng., C: Mater. Biol. Appl., 2020, vol. 113, no. 110975, pp. 1–8. https://doi.org/10.1016/j.msec.2020.110975

    Article  CAS  Google Scholar 

  98. Reuter, L.J., Shahbazi, M.-A., Makila, E.M., Salonen, J.J., Saberianfar, R., Menassa, R., Santos, H.A., Joensuu, J.J., and Ritala, A., Bioconjug. Chem., 2017, vol. 28, pp. 1639–1648. https://doi.org/10.1021/acs.bioconjchem.7b00075

    Article  CAS  PubMed  Google Scholar 

  99. Wang, B., Han, Z., Song, B., Yu, L., Ma, Z., Xu, H., and Qiao, M., Colloids Surf., A, 2021, vol. 628, no. 127351, pp. 1–9. https://doi.org/10.1016/j.colsurfa.2021.127351

    Article  CAS  Google Scholar 

  100. Younger, J.G., Shock, 2016, vol. 46, pp. 597–608. https://doi.org/10.1097/SHK.0000000000000692

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maan, A.M.C., Hofman, A.H., de Vos, W.M., and Kamperman, M., Adv. Funct. Mater., 2020, vol. 30, no. 2000936, pp. 1–30. https://doi.org/10.1002/adfm.202000936

    Article  CAS  Google Scholar 

  102. Artini, M., Cicatiello, P., Ricciardelli, A., Papa, R., Selan, L., Dardano, P., Tilotta, M., Vrenna, G., Tutino, M.L., Giardina, P., and Parrilli, E., Biofouling, 2017, vol. 33, pp. 601–611. https://doi.org/10.1080/08927014.2017.1338690

    Article  CAS  PubMed  Google Scholar 

  103. Devine, R., Singha, P., and Handa, H., Biomater. Sci., 2019, vol. 7, pp. 3438–3449. https://doi.org/10.1039/c9bm00469f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boeuf, S., Throm, T., Gutt, B., Strunk, T., Hoffmann, M., Seebach, E., Muhlberg, L., Brocher, J., Gotterbarm, T., Wenzel, W., Fischer, R., and Richter, W., Acta Biomater., 2012, vol. 8, pp. 1037–1047. https://doi.org/10.1016/j.actbio.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  105. Shufang, W., Li, J., and Tang, D., Method for loading bioactive protein on hydrophobic stent material, CN Patent No. 107308501A, 2017.

  106. Kuvarina, A.E., Georgieva, M.L., Rogozhin, E.A., Kulko, A.B., Gavryushina, I.A., and Sadykova, V.S., Appl. Biochem. Microbiol., 2021, vol. 57, no. 1, pp. 86–93. https://doi.org/10.1134/S0003683821010142

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Kuvarina or V. S. Sadykova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Bulaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatukhin, E.V., Ihalainen, Y.A., Markelova, N.N. et al. Fungal Hydrophobins: Biosynthesis, Properties, and Possibilities of Application in Biotechnology (Review). Appl Biochem Microbiol 60, 372–382 (2024). https://doi.org/10.1134/S0003683824603603

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603603

Keywords:

Navigation