Skip to main content

Fungal Hydrophobins

  • Chapter
  • First Online:
Fungal Biopolymers and Biocomposites
  • 888 Accesses

Abstract

Hydrophobins are cysteine-rich amphipathic proteins found throughout the fungal kingdom and play important functions in the fungal life cycle. They are known to be involved in the conidiogenesis and formation of appressorium in Magnapothe oryzae and Metarhizium anisopliae, the growth of microsclerotia in Verticillium dahlia, and the development of microconidia in Fusarium verticillioides. Hydrophobins are also involved in disseminating Cladosporium fulvum spores and the production of aerial hyphae in Schizophyllum commune. Moreover, fungal hydrophobins have been well studied at the biochemical and molecular levels. Their role in the life cycles of Agaricus bisporus, Aspergillus fumigatus, A. nidulans, Magnaporthe grisea, Neurospora crassa, Ophiostoma ulmi, Schizophyllum commune, Trichoderma harzianum, and T. reesei have also been studied. Furthermore, the amphipathic characteristics of fungal hydrophobins have been used to solubilize and deliver hydrophobic medicines, as well as for purification and immobilization of proteins, as a antimicrobial coats, in biosensor development, and also as emulsifying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque A, Kyaw CM, Saldanha RR, Brigido MM, Felipe MMS, Silva-Pereira I (2004) Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 41:510–520

    Article  CAS  PubMed  Google Scholar 

  • Asgeirsdattir SA, Van Wetter MA, Wessels JGH (1995) Differential expression of genes under control of the mating-type genes in the secondary mycelium of Schizophyllum commune. Microbiology 141:1281–1288

    Article  Google Scholar 

  • Asgeirsdattir SA, Halsall JR, Casselton LA (1997) Expression of two closely linked hydrophobin genes of Coprinus cinereus is monokaryon-specific and down-regulated by the oid-1 mutation. Fungal Genet Biol 22:54–63

    Article  Google Scholar 

  • Askolin S, Nakari-Setälä T, Tenkanen M (2001) Overproduction, purification, and characterization of the Trichoderma reesei hydrophobin HFBI. Appl Microbiol Biotechnol 57:124–130

    Article  CAS  PubMed  Google Scholar 

  • Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi M (2020) A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng C 113:110975

    Article  CAS  Google Scholar 

  • Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latgé J-P (2012) Hydrophobins—unique fungal proteins. PLoS Pathog 8:e1002700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) Clock-controlled genes isolated from Beurospira crassa are late night-to morning specific. Genes Dev 6:2382–2394

    Article  CAS  PubMed  Google Scholar 

  • Boeuf S, Throm T, Gutt B, Strunk T, Hoffmann M, Seebach E, Mühlberg L, Brocher J, Gotterbarm T, Wenzel W, Fischer R, Richter W (2012) Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells. Acta Biomater 8:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Corvis Y, Walcarius A, Rink R, Mrabet NT, Rogalska E (2005) Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 77:1622–1630

    Article  CAS  PubMed  Google Scholar 

  • De Vocht ML, Reviakine I, Wösten HAB, Brisson A, Wessels JGH, Robillard GT (2000) Structural and functional role of the disulphide bridges in the hydrophobin SC3. J Biol Chem 275:28428–28432

    Article  PubMed  Google Scholar 

  • De Vries OMH, Moore S, Arntz C, Wessels JGH, Tudzynski P (1999) Identification and characterization of a tri-partite hydrophobin from Calviceps fusifomis: a novel type of class II hydrophobin. Eur J Biochem 262:377–385

    Article  PubMed  Google Scholar 

  • Devine R, Singha P, Handa H (2019) Versatile biomimetic medical device surface: hydrophobin coated, nitric oxide-releasing polymer for antimicrobial and hemocompatible applications. Biomater Sci 7:3438–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döring J, Rettke D, Rödel G, Pompe T, Ostermann K (2019) Surface functionalization by hydrophobin-EPSPS fusion protein allows for the fast and simple detection of glyphosate. Biosensors 9:104

    Article  PubMed Central  CAS  Google Scholar 

  • Duan S, Wang B, Qiao M, Zhang X, Liu B, Zhang H, Song B, Wu J (2020) Hydrophobin HGFI–based fibre-optic biosensor for detection of antigen–antibody interaction. Nanophotonics 9:177–186

    Article  CAS  Google Scholar 

  • Fang G, Tang B, Liu Z, Gou J, Zhang Y, Xu H, Tang X (2014) Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: in vitro characteristics and in vivo performance. Eur J Pharm Sci 60:1–9

    Article  CAS  PubMed  Google Scholar 

  • Fuchs U, Czymmek KJ, Sweigard JA (2004) Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol 41:852–864

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R (2013) Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 13:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Häkkinen ST, Reuter L, Nuorti N, Joensuu JJ, Rischer H, Ritala A (2018) Tobacco BY2 media component optimization for a cost-efficient recombinant protein production. Front Plant Sci 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennig S, Rödel G, Ostermann K (2016) Hydrophobin-based surface engineering for sensitive and robust quantification of yeast pheromones. Sensors (Basel) 16:602

    Article  CAS  Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Li X, Li X, Feng X-Z, Wang R, Wang C, Yu L, Qiao M-Q (2009) Surface modification using a novel type I hydrophobin HGFI. Anal Bioanal Chem 394:783–789

    Article  CAS  PubMed  Google Scholar 

  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor M (2012) Host-pathogen interaction in Metarhizium anisopliae and its host Helicoverpa armigera. PhD thesis, Savitribai Phule Pune University, Pune

    Google Scholar 

  • Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland BH, Keyhani NO (2011) Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli. Ind J Microbiol Biotechnol 38:327–335

    Article  CAS  Google Scholar 

  • Kim S, Ahn IP, Lee YH (2001) Analysis of gene expressed during rice Magnaporhte grisea interactions. Mol Plant-Microbe Interact 14:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahlia. Fungal Genet Biol 43:283–294

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Nene S, Joshi K (2017) Production of hydrophobins from fungi. Process Biochem 61:1–11

    Article  CAS  Google Scholar 

  • Laaksonen P, Kivioja J, Paananen A, Kainlauri M, Kontturi K, Ahopelto J, Linder MB (2009) Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein. Langmuir 25:5185–5192

    Article  CAS  PubMed  Google Scholar 

  • Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hou S, Feng X, Yu Y, Ma J, Li L (2009) Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin. Colloids Surf B Biointerfaces 74:370–374

    Article  CAS  PubMed  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-SetÓ“lÓ“ T, PenttilÓ“ ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  CAS  PubMed  Google Scholar 

  • Lugones LG, Bosscher JS, Scholtmeijer K, De Vries OMH, Wessels JGH (1996) An abundant hydrophobin (ABH1) forms hydrophocin rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Maiolo D, Pigliacelli C, Sánchez Moreno P, Violatto MB, Talamini L, Tirotta I, Piccirillo R, Zucchetti M, Morosi L, Frapolli R, Candiani G, Bigini P, Metrangolo P, Baldelli BF (2017) Bioreducible hydrophobin-stabilized supraparticles for selective intracellular release. ACS Nano 11:9413–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastanjevic K, Mastanjevic K, Krstanovic V (2017) The gushing experience—a quick overview. Beverages 3:25

    Article  CAS  Google Scholar 

  • Melcher M, Facey SJ, Henkes TM, Subkowski T, Hauer B (2016) Accelerated nucleation of hydroxyapatite using an engineered hydrophobin fusion protein. Biomacromolecules 17:1716–1726

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei F, Mirzaei M, Torkzadeh-Mahani M (2019) A hydrophobin-based-biosensor layered by an immobilized lactate dehydrogenase enzyme for electrochemical determination of pyruvate. Bioelectrochemistry 130:107323

    Article  CAS  PubMed  Google Scholar 

  • Misra R, Li J, Cannon GC, Morgan SE (2006) Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune. Biomacromolecules 7:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Munaoz G, Nakari-Setälä T, Agosin E, Penttilä M (1997) Hydrophobin gene srh1, expressed during sporulation of the biocontrol agent Trichoderma harzianum. Curr Genet 32:225–230

    Article  Google Scholar 

  • Nakari-Setala T, Aro N, Kalkkinen N, Alatalo E, Penttila M (1996) Genetic and biochemical characterization of the Trichoderma reesei hydrophobin HFB1. Eur J Biochem 235:248–255

    Article  CAS  PubMed  Google Scholar 

  • Niu B, Wang D, Yang Y, Xu H, Qiao M (2012) Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids 43:763–771

    Article  CAS  PubMed  Google Scholar 

  • Paris S, Debeaupuis JP, Crameri R, Carey M, Charlès F, Prevost MC, Schmitt C, Philippe B, Latge JP (2003) Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MH, Borodina I, Moresco JL, Svendsen WE, Frisvad JC, Søndergaard I (2011) High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris. Appl Microbiol Biotechnol 90:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Politi J, Stefano LD, Longobardi S, Giardina P, Rea I, Methivier C, Pradier CM, Casale S, Spadavecchia J (2015) The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles. Colloids Surf B Biointerfaces 136:214–221

    Article  CAS  PubMed  Google Scholar 

  • Politi J, Stefano LD, Rea I, Gravagnuolo AM, Giardina P, Methivier C, Casale S, Spadavecchia J (2016) One-pot synthesis of a gold nanoparticle-Vmh2 hydrophobin nano-biocomplex for glucose monitoring. Nanotechnology 27:195701

    Article  PubMed  CAS  Google Scholar 

  • Puopolo R, Sorrentino I, Gallo G, Piscitelli A, Giardina P, LeGof A, Fiorentino G (2021) Self-assembling thermostable chimeras as new platform for arsenic biosensing. Sci Rep 11:2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter L, Ritala A, Linder M, Joensuu J (2016) Novel hydrophobin fusion tags for plant-produced fusion proteins. PLoS One 11:e0164032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reuter LJ, Shahbazi MA, Mäkilä EM, Salonen JJ, Saberianfar R, Menassa R, Santos HA, Joensuu JJ, Ritala A (2017) Coating nanoparticles with plant produced transferrin–hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjug Chem 28:1639–1648

    Article  CAS  PubMed  Google Scholar 

  • Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663

    Article  CAS  PubMed  Google Scholar 

  • Schmoll M, Seibel C, Kotlowski C, Wöllert Genannt Vendt F, Liebmann B, Kubicek CP (2010) Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Appl Microbiol Biotechnol 88:95–103

    Article  CAS  PubMed  Google Scholar 

  • Scholtmeijer K, Janssen MI, Gerssen B, de Vocht ML, van Leeuwen BMM, van Kooten TG, Wösten HAB, Wessels JGH (2002) Surface modifications created by using engineered hydrophobins. Appl Environ Microbiol 68:1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurs TA, Schaeffer EA, Wessels JG (1997) Homology-dependent silencing of the SC3 gene in Schizophyllum commune. Genetics 147:589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soikkeli M, Kurppa K, Kainlauri M, Arpiainen S, Paananen A, Gunnarsson D, Joensuu JJ, Laaksonen P, Prunnila M, Linder MB, Ahopelto J (2016) Graphene biosensor programming with genetically engineered fusion protein monolayers. ACS Appl Mater Interfaces 8:8257–8264

    Article  CAS  PubMed  Google Scholar 

  • Song D, Gao Z, Zhao L, Wang X, Xu H, Bai Y, Zhang X, Linder MB, Feng H, Qiao M (2016) High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris. Protein Expr Purif 128:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino I, Giardina P, Piscitelli A (2019) Development of a biosensing platform based on a laccase-hydrophobin chimera. Appl Microbiol Biotechnol 103:3061–3071

    Article  CAS  PubMed  Google Scholar 

  • Spadavecchia JP, De Stefano L, Rea I, Gravagnuolo AM, Giardina P, Methivier C, Casale S, Politi J (2016) One-pot synthesis of a gold nanoparticle–Vmh2 hydrophobin nano-biocomplex for glucose monitoring. Nanotechnology 27:195701

    Article  PubMed  CAS  Google Scholar 

  • Spanu P (1997) HCF-1, a hydrophobin from the tomato pathogen Cladosporium fulvum. Gene 193:89–96

    Article  CAS  PubMed  Google Scholar 

  • Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodlet less, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • St. Leger RJ, Staples RC, Roberts DW (1992) Cloning and regulatory analysis of a starvation strss gene Ssga, encoding a hydrophobin-like protein from the entomopahtogenic fungus, Metarhizium anisopliae. Gene 120:119–124

    Article  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teertstra WR, Deelstra HJ, Vranes M, Bohlmann R, Kahmann R, Kämpe J, Wosten HAB (2006) Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in Ustilago maydis. Microbiology 152:3607–3612

    Article  CAS  PubMed  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002) Hydrophobin DGH1, DGH2 and DGH3 in the lichenforming basidiomycete Dictyonema glabratum. Fungal Genet Biol 35:247–259

    Article  CAS  PubMed  Google Scholar 

  • Valo H, Laaksonen P, Peltonen L, Linder M, Hirvonen J, Laaksonen T (2010) Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano 4:1750–1758

    Article  CAS  PubMed  Google Scholar 

  • Van Wetter MA, Schuren FHJ, Schuurs TA, Wessels JGH (1996) Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140:265–269

    Article  Google Scholar 

  • Wang Z, Feng S, Huang Y, Li S, Xu H, Zhang X, Bai Y, Qiao M (2010) Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expr Purif 72:19–25

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Mao J, Chen Y, Song D, Gao Z, Zhang X, Bai Y, Saris PEJ, Feng H, Xu H, Qiao M (2017) Design of antibacterial biointerfaces by surface modification of poly(ε-caprolactone) with fusion protein containing hydrophobin and PA-1. Colloids Surf B Biointerfaces 151:255–263

    Article  CAS  PubMed  Google Scholar 

  • Weickert U, Wiesend F, Subkowski T, Eickhoff A, Reiss G (2011) Optimizing biliary stent patency by coating with hydrophobin alone or hydrophobin and antibiotics or heparin: an in vitro proof of principle study. Adv Med Sci 56:138–144

    Article  CAS  PubMed  Google Scholar 

  • Wessels JG (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    CAS  PubMed  Google Scholar 

  • Whiteford JR, Spanu PD (2001) The hydrophobin HCf-1 of Cladosporium fulvum is required for efficient water-mediated dispersal of conidia. Fungal Genet Biol 32:159–168

    Article  CAS  PubMed  Google Scholar 

  • Wohlleben W, Subkowski T, Bollschweiler C, von Vacano B, Liu Y, Schrepp W, Baus U (2010) Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins. Eur Biophys J 39:457–468

    Article  CAS  PubMed  Google Scholar 

  • WÓ§sten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  Google Scholar 

  • WÓ§sten HAB, Scholtmeijer K (2015) Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 99:1587–1597

    Article  CAS  Google Scholar 

  • Wösten H, Wessels J (1997) Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363–374

    Article  Google Scholar 

  • Wosten HA, Asgeirsdottir SA, Krook JH, Drenth JH, Wessels JG (1994) The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol 63:122–129

    CAS  PubMed  Google Scholar 

  • Yaguchi M, Pusztai-Carey M, Roy C, Surewicz WK, Carey PR, Stevenson KJ, Richards WC, Takai S (1993) Cellular and molecular approaches. In: Sticklen MB, Sherald JL (eds) Dutch elm disease research. Springer, New York, pp 152–170

    Chapter  Google Scholar 

  • Zhang M, Wang Z, Wang Z, Feng S, Xu H, Zhao Q, Wang S, Fang J, Qiao M, Kong D (2011) Immobilization of anti-CD31 antibody on electrospun poly(É›-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B Biointerfaces 85:32–39

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z-X, Qiao M-Q, Yin F, Shao B, Wu B-Y, Wang Y-Y, Wang X-S, Qin X, Li S, Yu L, Chen Q (2007) Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization. Biosens Bioelectron 22:3021–3027

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z-X, Wang H-C, Qin X, Wang X-S, Qiao M-Q, Anzai J, Chen Q (2009) Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B Biointerfaces 71:102–106

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ma S, Pan Y, Zhang Q, Wang K, Song D, Wang X, Feng G, Liu R, Xu H, Zhang J, Qiao M, Kong D (2016a) Functional modification of fibrous PCL scaffolds with fusion protein VEGF-HGFI enhanced cellularization and vascularization. Adv Healthc Mater 5(18):2376–2385

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Xu H, Li Y, Wnag X, Qiao M, Gong M (2016b) Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci Rep 6:26461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The financial support from the Department of Biotechnology, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Ghormade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghormade, V., Tupe, S.G., Pathan, E., Deshpande, M.V. (2022). Fungal Hydrophobins. In: Deshmukh, S.K., Deshpande, M.V., Sridhar, K.R. (eds) Fungal Biopolymers and Biocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-1000-5_3

Download citation

Publish with us

Policies and ethics