Skip to main content
Log in

Novel Hydrophobins from Trichoderma Define a New Hydrophobin Subclass: Protein Properties, Evolution, Regulation and Processing

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albayrak A, Otu HH, Sezerman UO (2010) Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets. BMC Bioinform 11:428

    Google Scholar 

  • Albuquerque P, Kyaw CM, Saldanha RR, Brigido MM, Felipe MS, Silva-Pereira I (2004) Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 41:510–520

    Article  PubMed  CAS  Google Scholar 

  • Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306

    Article  PubMed  CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  CAS  Google Scholar 

  • Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OM, Sonveaux N, Wosten HA, Ruysschaert JM, Hadziloannou G, Wessels JG, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068

    Article  PubMed  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG (2007) A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur Biophys J 36:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP (Phylogeny Inference Package). Cladistics 5:164–166

    Google Scholar 

  • Fiser AS, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Barioch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  • Harman GE, Petzold R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Hektor HJ, Scholtmeijer K (2005) Hydrophobins: proteins with potential. Curr Opin Biotechnol 16:434–439

    Article  PubMed  CAS  Google Scholar 

  • Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426

    Article  PubMed  Google Scholar 

  • Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS (2008) Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 8:4

    Article  PubMed  Google Scholar 

  • Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci USA 103:3621–3626

    Article  PubMed  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  • Lugones LG, Wosten HA, Wessels JG (1998) A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology 144(Pt 8):2345–2353

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  • Mikus M, Hatvani L, Neuhof T, Komon-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, von Dohren H, Kubicek CP (2009) Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Environ Microbiol 75:3222–3229

    Article  PubMed  CAS  Google Scholar 

  • Murphy LR, Wallqvist A, Levy RM (2000) Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Eng 13:149–152

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  PubMed  CAS  Google Scholar 

  • Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, Nakari-Setälä T, Penttilä M, von Döhren H (2007) Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J 274:841–852

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Honig B (1990) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Bolzmann equation. J Comput Chem 12:435–445

    Article  Google Scholar 

  • Otu HH, Sayood K (2003) A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19:2122–2130

    Article  PubMed  CAS  Google Scholar 

  • Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27:928–937

    Article  PubMed  CAS  Google Scholar 

  • Rajashekar B, Samson P, Johansson T, Tunlid A (2007) Evolution of nucleotide sequences and expression patterns of hydrophobin genes in the ectomycorrhizal fungus Paxillus involutus. New Phytol 174:399–411

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Scholtmeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HA (2004) The use of hydrophobins to functionalize surfaces. Biomed Mater Eng 14:447–454

    PubMed  CAS  Google Scholar 

  • Seidl V, Seiboth B, Karaffa L, Kubicek CP (2004) The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Fungal Genet Biol 41:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  PubMed  CAS  Google Scholar 

  • Seidl V, Schmoll M, Scherm B, Balmas V, Seiboth B, Migheli Q, Kubicek CP (2006) Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiol Lett 257:145–151

    Article  PubMed  CAS  Google Scholar 

  • Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39:773–784

    Article  PubMed  CAS  Google Scholar 

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    PubMed  CAS  Google Scholar 

  • Talbot NJ (1999) Fungal biology. Coming up for air and sporulation. Nature 398:295–296

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vargovic P, Pokorny R, Holker U, Hofer M, Varecka L (2006) Light accelerates the splicing of srh1 homologue gene transcripts in aerial mycelia of Trichoderma viride. FEMS Microbiol Lett 254:240–244

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  PubMed  CAS  Google Scholar 

  • Vizcaino JA, Redondo J, Suarez MB, Cardoza RE, Hermosa R, Gonzalez FJ, Rey M, Monte E (2007) Generation, annotation, and analysis of ESTs from four different Trichoderma strains grown under conditions related to biocontrol. Appl Microbiol Biotechnol 75:853–862

    Article  PubMed  CAS  Google Scholar 

  • Wessels JG (1999) Fungi in their own right. Fungal Genet Biol 27:134–145

    Article  PubMed  CAS  Google Scholar 

  • Whiteford JR, Spanu PD (2002) Hydrophobins and the interaction between fungi and plants. Mol Plant Pathol 3:391–400

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fifth (EC) Framework program (Quality of Life and Management of Living Resources; Project EUROFUNG 2; QLK3-1999-00729) to CPK and HVD, by the FWF Austrian Science Fund (P-19690 to CPK and T390 to VS) and by a fellowship from the Deutsche Forschungsgemeinschaft (Do270/10) to HVD. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SEB was supported by the DOE EERE Office of the Biomass Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Kubicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidl-Seiboth, V., Gruber, S., Sezerman, U. et al. Novel Hydrophobins from Trichoderma Define a New Hydrophobin Subclass: Protein Properties, Evolution, Regulation and Processing. J Mol Evol 72, 339–351 (2011). https://doi.org/10.1007/s00239-011-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9438-3

Keywords

Navigation