Skip to main content
Log in

Bioconversion of Crude Fish Oil Into Poly-3-hydroxybutyrate by Ralstonia sp. M91

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The biosynthesis of polyhydroxyalkanoates from crude fish oil by bacteria isolated from soil samples was investigated. More than 200 bacterial colonies were isolated, among them 15 isolates were selected and tested for their abilities to synthesize PHA from crude fish oil. Eight strains were found to produce the poly-3-hydroxybutyrate (PHB) from crude fish oil with PHB content ranging from 7.4 to 50.1 wt %. The highest PHB producing bacterium (strain M91) was chosen for further studies. Based on the 16S rRNA gene sequences, strain M91 was classified into genus Ralstonia. In flask experiment, high cell dry weight (CDW) of 3.93 g/L and PHB concentration of 2.43 g/L were obtained by strain M91 when cultured in the medium containing 15 g/L crude fish oil. The CDW and PHB concentration were then increased to 5.32 and 2.73 g/L, respectively, when strain M91 was cultivated in 10-liter bioreactor. The production of PHB by Ralstonia M91 using crude fish oil as an inexpensive carbon source is expected to reduce the production cost and motivates further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Reddy, C.S., Ghai, R., Rashmi, and Kalia, V., Bioresour. Technol., 2003, vol.87, no. 2, pp. 137–146.

    Article  CAS  Google Scholar 

  2. Philip, S., Keshavarz, T., and Roy, I., J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 3, pp. 233–247.

    Article  CAS  Google Scholar 

  3. Chen, G.Q. Industrial Production of PHA, Chen, G.Q., Ed., Berlin: Springer-Verlag, 2010.

    Book  Google Scholar 

  4. Salehizadeh, H. and Van Loosdrecht, M.C.M., Biotechnol. Adv., 2004, vol. 22, no. 3, pp. 261–279.

    Article  CAS  Google Scholar 

  5. Jiang, G., Hill, D.J., Kowalczuk, M., Johnston, B., Adamus, G., Irorene, V., and Radecka, I., Int. J. Mol. Sci., 2016, vol. 17, no. 7, p. 1157.

    Article  Google Scholar 

  6. Favaro, L., Basaglia, M., and Casella, S., Biofuels, Bioprod. Bioref., 2018, vol. 13, no. 1, pp. 208–227.

    Article  Google Scholar 

  7. FAO., The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals, Rome, 2018. Licence CC BY-NC-SA 3.0 IGO 2018.

  8. Ghaly, A.E., Ramakrishnan, V.V., Brooks, M.S., Budge, S.M., and Dave, D., J. Microb. Biochem. Technol., 2013, vol. 5, no. 4, pp. 107–129.

    Google Scholar 

  9. Ashby, R.D. and Solaiman, D.K.Y., J. Polym. Environ., 2008, vol. 16, pp. 221–229.

    Article  CAS  Google Scholar 

  10. Mohapatra, S., Sarkar, B., Samantaray, D.P., Daware, A., Maity, S., Pattnaik, S., and Bhattacharjee, S., Environ. Technol., 2017, vol. 38, no. 24, pp. 3201–3208.

    Article  CAS  Google Scholar 

  11. Thuoc, D.V., My, D.N., Loan, T.T., and Sudesh, K., Int. J. Biol. Macromol., 2019, vol. 141, pp. 885–892.

    Article  Google Scholar 

  12. Spiekermann, P., Rehm, B.H., Kalscheuer, R., Baumeister, D., and Steinbüchel, A., Arch. Microbiol., 1999, vol. 171, no. 2, pp. 73–80.

    Article  CAS  Google Scholar 

  13. Tamura, K., Stecher, G., Peterson, D., and Filipski, A., Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729.

    Article  CAS  Google Scholar 

  14. Saitou, N. and Nei, M., Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  15. Phong, T.H., Thuoc, D.V., and Sudesh, K., Int. J. Biol. Macromol., 2016, vol. 84, pp. 361–366.

    Article  Google Scholar 

  16. Huijberts, G.N.M., van der Wal, H., Wilkinson, C., and Eggink. G., Biotechnol. Tech., 1994, vol. 8, pp. 187–192.

    Article  CAS  Google Scholar 

  17. Gouda, M.K., Swellam, A.E., and Omar, S.H., Microbiol. Res., 2001, vol. 156, no. 3, pp. 201–207.

    Article  CAS  Google Scholar 

  18. Kim, B.S., Lee, S.C., Lee, S.Y., Chang, H.N., Chang, Y.K., and Woo, S.I., Biotechnol. Bioeng., 1994, vol. 43, no. 9, pp. 892–898.

    Article  CAS  Google Scholar 

  19. Wang, F. and Lee, S.Y., Appl. Environ. Microbiol., 1997, vol. 63, no. 9, pp. 3703–3706.

    Article  CAS  Google Scholar 

  20. Suzuki, T., Yamane, T., and Shimizu, S., Appl. Microbiol. Biotechnol., 1986, vol. 23, pp. 322–329.

    Article  CAS  Google Scholar 

  21. Quillaguamán, J., Doan-Van, T., Guzmán, H., Guzmán, D., Martín, J., Everest, A., and Hatti-Kaul, R., Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 227–232.

    Article  Google Scholar 

  22. Madison, L.L. and Huisman, G.W., Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 1, pp. 21–53.

    Article  CAS  Google Scholar 

  23. Steinbüchel, A. and Valentin, H.E., FEMS Microbiol. Lett., 1995, vol. 128, no. 3, pp. 219–228.

    Article  Google Scholar 

  24. Tajima, K., Igari, T., Nishimura, D., Nakamura, M., Satoh, Y., Munekata, M., J. Biosci. Bioeng., 2003, vol. 95, no. 1, pp. 77–81.

    Article  CAS  Google Scholar 

  25. Steinberg, J.P. and Burd, E.M., Other Gram-Negative and Gram-Variable Bacilli, Bennett, J., Ed., New York: Elsevier, 2015.

    Book  Google Scholar 

  26. Bonatto, D., Matias, F., Lisbôa, M.P., Bogdawa, H.M., and Henriques, J.A.P., World J. Microbiol. Biotechnol., 2004, vol. 20, no. 4, pp. 395–403.

    Article  CAS  Google Scholar 

  27. Alves, M.I., Macagnan, K.L., Piecha, C.R., Torres, M.M., Perez, I.A., Kesserlingh, S.M. et al., PLoS One, 2019, vol. 14, no. 1. e0211211.

    Article  CAS  Google Scholar 

  28. Guzmán, H., Van-Thuoc, D., Martín, J., Hatti-Kaul, R., and Quillaguamán, J., Appl. Microbiol. Biotechnol., 2009, vol. 84, pp. 1069–1077.

    Article  Google Scholar 

  29. Koller, M., Fermentation, 2018, vol. 4, no. 2, p. 30.

    Article  Google Scholar 

  30. Taniguchi, I., Kagotani, K., and Kimura, Y., Green Chem., vol. 5, pp. 545–548.

  31. Riedel, S.L., Jahns, S., Koenig, S., Bock, M.C.E., Brigham, C.J., Bader, J., and Stahl, U., J. Biotechnol., 2015, vol. 214, pp. 119–127.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the Hanoi National University of Education, Vietnam for providing infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Thuoc.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuoc, D.V., Anh, V.T. Bioconversion of Crude Fish Oil Into Poly-3-hydroxybutyrate by Ralstonia sp. M91. Appl Biochem Microbiol 57, 219–225 (2021). https://doi.org/10.1134/S0003683821020162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020162

Keywords:

Navigation