Skip to main content
Log in

A Promising Herbicide-Resistant Bacterial Strain of Pseudomonas protegens for Stimulation of the Growth of Agricultural Cereal Grains

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The bacterial strain Pseudomonas protegens DA1.2 was isolated from anthropogenic disturbed soil, studied, and identified. The isolate has potential for use in crop production: it synthesizes indolylacetic acid, promotes the mobilization of phosphorus from insoluble compounds, has nitrogenase activity, and shows antagonism against microscopic fungi from the genera Alternaria, Bipolaris, Botrytis, Fusarium, and Rhizoctonia. The strain remains viable in herbicidal (Octapon Extra, Florax, Chistalan, Nanomet, Spetsnaz, Dicamba) solutions that are widely used to process crops of cultivated cereals and can be used in tank mixtures containing these herbicides. On a lit site, the simultaneous spraying of wheat plants with herbicide and a liquid culture of P. protegens DA1.2 stimulates root and shoots growth and normalizes the chlorophyll and proline content in the leaves. Field experience from 2019 on the field of the Baimak Division of the Bashkir Research Institute of Agriculture of the Ufa Federal Research Center of the Russian Academy of Science showed an 19–24% increase in yield after the use of bacterial culture against the background of the Nanomet and Chistalan herbicides. The results allow indicate that the culture of P. protegens DA1.2 is a promising growth stimulator and agent for a reduction of herbicide stress in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. El-Daim, I.A., Bejai, S., and Meijer, J., Plant Soil, 2014, vol. 379, nos. 1–2, pp. 337–350. https://doi.org/10.1007/s11104-014-2063-3

    Article  CAS  Google Scholar 

  2. Kaushal, M. and Wani, S.P., Agric. Ecosyst. Environ., 2016, vol. 231, pp. 68–78. https://doi.org/10.1016/j.agee.2016.06.031

    Article  CAS  Google Scholar 

  3. Ahemad, M. and Khan, M.S., Ann. Microbiol., 2010, vol. 60, pp. 735–745. https://doi.org/10.1007/s13213-010-0124-2

    Article  CAS  Google Scholar 

  4. Bourahla, M., Djebbar, R., Kaci, Y., and Abrous-Belbachir, O., Analele Univ. din Oradea, Fasc. Biol., 2018, vol. 25, no. 2, pp. 74–83.

    Google Scholar 

  5. Ahemad, M. and Khan, M.S., Pestic. Biochem. Physiol., 2010, vol. 98, no. 2, pp. 183–190. https://doi.org/10.1016/j.pestbp.2010.06.005

    Article  CAS  Google Scholar 

  6. Chennappa, G., Sreenivasa, M.Y., and Nagaraja, H., in Microorganisms for Green Revolution. Microorganisms for Sustainability, Panpatte, D., Jhala, Y., Shelat, H., and Vyas, R., Eds., Singapore: Springer, 2018, vol. 7, pp. 23–43. https://doi.org/10.1007/978-981-10-7146-1_2

  7. Chetverikov, S.P., Chetverikova, D.V., Kendzhieva, A.A., and Bakaeva, M.D., Estestv. Tekhn. Nauki, 2019, no. 11, pp. 108–111. https://doi.org/10.25633/ETN.2019.11.18

  8. Jacobsen, C.S., Plant Soil, 1997, vol. 189, no. 1, pp. 139–144. https://doi.org/10.1023/A:1004296615446

    Article  CAS  Google Scholar 

  9. Manual of Methods for General Bacteriology, Gerhardt, P., Ed., Washington: Am. Soc. Microbiol., 1981, vol. 3.

    Google Scholar 

  10. Wilson, K., in Current Protocols in Molecular Biology, Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Eds., New York: Green Publishing Associates, 2003, pp. 241–245.

    Google Scholar 

  11. Raymond, R.L., Dev. Industr. Microbiol., 1961, vol. 2, no. 1, pp. 23–32.

    CAS  Google Scholar 

  12. Veselov, S.Y., Kudoyarova, G.R., Egutkin, N.L., Guili-Zade, V.Z., Mustafina, A.R., and Kof, E.M., Physiol. Plant., 1992, vol. 86, no. 1, pp. 93–96. https://doi.org/10.1111/j.1399-3054.1992.tb01316.x

    Article  CAS  Google Scholar 

  13. Pikovskaya, R.I., Mikrobiologiya, 1948, vol. 17, no. 5, pp. 362–370.

    CAS  Google Scholar 

  14. Korshunova, T.Yu., Chetverikov, S.P., Mukhamatd’yarova, S.R., and Loginov, O.N., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2013, nos. 3–5, pp. 1637–1640.

  15. Chetverikov, S.P. and Loginov, O.N., Microbiology (Moscow), 2009, vol. 78, no. 4, pp. 428–432.

    Article  CAS  Google Scholar 

  16. Bates, L.S., Waldren, R.P., and Teare, I.D., Plant Soil, 1973, vol. 39, no. 1, pp. 205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  17. RF Patent no. 2244916, 2003.

  18. Tsukanova, K.A., Meyer, J.J.M., and Bibikova, T.N., S. Afr. J. Bot., 2017, vol. 113, pp. 91–102.https://doi.org/10.1016/j.sajb.2017.07.007

    Article  CAS  Google Scholar 

  19. Samavat, S., Samavat, S., Mafakheri, S., and Shakouri, M.J., Bulg. J. Agric. Sci, 2012, vol. 18, no. 3, pp. 387–395.

    Google Scholar 

  20. Bakaeva, M., Kuzina, E., Vysotskaya, L., Kudoyarova, G., Arkhipova, T., Rafikova, G., Chetverikov, S., Korshunova, T., Chetverikova, D., and Loginov, O., Plants, 2020, vol. 9, no. 3, article 379. https://doi.org/10.3390/plants9030379

    Article  CAS  PubMed Central  Google Scholar 

  21. Mwadzingeni, L., Shimelis, H., Tesfay, S., and Tsilo, T.J., Front. Plant Sci., 2016, vol. 7, article 1276. https://doi.org/10.3389/fpls.2016.01276

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kolupaev, Y.E., Yastreb, T.O., Oboznyi, A.I., Kirichenko, V.V., and Ryabchun, N.I., Russ. J. Plant Physiol., 2016, vol. 63, no. 3, pp. 326–337.https://doi.org/10.1134/S1021443716030067

    Article  CAS  Google Scholar 

  23. Agafonova, N.V., Doronina, N.V., and Trotsenko, Y.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 199–204.https://doi.org/10.1134/S0003683816020022

    Article  CAS  Google Scholar 

  24. Ashraf, M. and Harris, P.J.C., Photosynthetica, 2013, vol. 51, no. 2, pp. 163–190.https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to R.R. Garafutdinov (IBG UFRS RAS) for his assistance with scanning probe microscopy.

Funding

The work was performed within the framework of the state assignments of the Ministry of Education and Science of Russia (project no. 075-00326-19-00) on topic no. AAAA-A19-119021390081-1 with equipment of the Agidel Center for Collective Use of the Ufa Federal Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Chetverikov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverikov, S.P., Chetverikova, D.V., Bakaeva, M.D. et al. A Promising Herbicide-Resistant Bacterial Strain of Pseudomonas protegens for Stimulation of the Growth of Agricultural Cereal Grains. Appl Biochem Microbiol 57, 110–116 (2021). https://doi.org/10.1134/S0003683821010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821010051

Keywords:

Navigation