Skip to main content
Log in

Hydrogen peroxide-induced salt tolerance in the Arabidopsis salicylate-deficient transformants NahG

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of hydrogen peroxide treatment on the salt tolerance of wild-type Arabidopsis thaliana L. plants (Col-0) and plants transformed with the bacterial salicylate hydroxylase gene (NahG) was studied. The base tolerance to salt stress caused by 200 mM of NaCl in solution culture was higher in plants with the NahG genotype in comparison with the wild-type plants. Growth inhibition was observed for wild-type plants under the action of exogenous hydrogen peroxide, which was not observed for the NahG transformants; salt tolerance increased in the both types of plants after treatment, which was assessed based on the growth indicators and the ability to preserve the chlorophyll pool following NaCl treatment. The content of endogenous Н2О2 in the leaves of wild-type plants increased significantly following exogenous hydrogen peroxide treatment and salt stress, while it practically did not change in the leaves of the NahG genotype. The SOD activity increased in both genotypes after treatment with exogenous hydrogen peroxide, and remained at an elevated level after salt stress in comparison with the nontreated plants. Furthermore, the catalase activity increased in leaves of the salicylate-deficient genotype but not in the Col-0 genotype. The guaiacol peroxidase activity increased in plants of both genotypes under the action of hydrogen peroxide and salt stress, with the NahG plants demonstrating a higher degree of increase. The Н2О2 treatment facilitated the increase of the proline content in leaves of the plants of both genotypes under conditions of salt stress. It was concluded that there were hydrogen peroxide signal transduction pathways in Arabidopsis plants that were salicylic acid independent and that the antioxidant system functioned more effectively in salicylate-deficient Arabidopsis plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niu, L. and Liao, W., Front. Plant Sci., 2016, vol. 7, p. 230. doi 10.3389/fpls.2016.00230

    PubMed  PubMed Central  Google Scholar 

  2. Kolupaev, Yu.E., Karpets, Yu.V., and Dmitriev, A.P., Cytol. Genet., 2015, vol. 49, no. 5, pp. 338–348.

    Article  Google Scholar 

  3. Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., and Hao, F., J. Exp. Bot., 2012, vol. 63, no. 1, pp. 305–317.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, Y., Yang, F., Li, X., Shi, R., and Lu, J., Plant Cell Tiss. Org. Cult., 2013, vol. 112, no. 1, pp. 33–42.

    Article  CAS  Google Scholar 

  5. Hossain, M.A., Bhattacharjee, S., Armin, S.-M., Qian, P., Xin, W., Li, H.-Yu., Burritt, D.J., Fujita, M., and Tran, L.-S.P., Front. Plant Sci., 2015, vol. 6, p. 420. doi 10.3389/fpls.2015.00420

    PubMed  PubMed Central  Google Scholar 

  6. Petrov, V.D. and Breusegem, F.V., AoB Plants, 2012, pls014. doi 10.1093/aobpla/pls014

    Google Scholar 

  7. Quan, L.-J., Zhang, B., Shi, W.-W., and Li, H.-Y., J. Integr. Plant Biol., 2008, vol. 50, no. 1, pp. 2–18.

    Article  CAS  PubMed  Google Scholar 

  8. Herrera-Vasquez, A., Salinas, P., and Holuigue, L., Front. Plant Sci., 2015, vol. 6, p. 171. doi 10.3389/fpls.2015.00171

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tarchevsky, I.A., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 338–345.

    Article  CAS  Google Scholar 

  10. Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A., and Fatkhutdinova, D.R., Plant Sci., 2003, vol. 164, no. 3, pp. 317–322.

    Article  CAS  Google Scholar 

  11. Mostofa, M.G., Fujita, M., and Tran, L.S.P., Plant Growth Regul., 2015, vol. 77, no. 3, pp. 265–277.

    Article  CAS  Google Scholar 

  12. Jayakannan, M., Bose, J., Babourina, O., Shabala, S., Massart, A., Poschenrieder, C., and Rengel, Z., J. Exp. Bot., 2015, vol. 66, no. 7, pp. 1865–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borsani, O., Valpuesta, V., and Botella, M.A., Plant Physiol., 2001, vol. 126, no. 3, pp. 1024–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, Q., Zhao, S., Ma, Q., Zhang, Y., Huang, L., Li, G., and Hao, L., J. Plant Growth Regul., 2014, vol. 33, no. 4, pp. 871–880.

    Article  CAS  Google Scholar 

  15. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryalsm, J., Science, 1993, vol. 261, no. 5122, pp. 754–756.

    Article  CAS  PubMed  Google Scholar 

  16. Yastreb, T.O., Karpets, Yu.V., Kolupaev, Yu.E., and Dmitriev, A.P., Cytol. Genet., 2017, vol. 51, no. 2, pp. 134–141.

    Article  Google Scholar 

  17. Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 210–215.

    Article  CAS  Google Scholar 

  19. Shlyk, A.A., Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinov, O.A., Ed., Moscow: Nauka, 1971.

  20. Sagisaka, S., Plant Physiol., 1976, vol. 57, no. 2, pp. 308–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., and Oboznyi, A.I., Russ. J. Plant Physiol., 2014, vol. 61, no. 3, pp. 339–346.

    Article  CAS  Google Scholar 

  22. Bates, L.S., Walden, R.P., and Tear, G.D., Plant Soil, 1973, vol. 39, no. 1, pp. 205–210.

    Article  CAS  Google Scholar 

  23. Kolupaev, Yu.E., Ryabchun, N.I., Vainer, A.A., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 499–506.

    Article  CAS  Google Scholar 

  24. Cao, Y., Zhan, Z.W., Xue, L.W., Du, J.B., Shang, J., Xu, F., Yuan, S., and Lin, H.H., Z. Naturforsc., vol. 64, nos. 3–4, pp. 231–238.

  25. van Wees, S.C.M. and Glazebrook, J., Plant J., 2003, vol. 33, no. 4, pp. 733–742.

    Article  PubMed  Google Scholar 

  26. Lee, S., Kim, S.-G., and Park, C.-M., New Phytol., 2010, vol. 188, no. 2, pp. 626–637.

    Article  CAS  PubMed  Google Scholar 

  27. Samuilov, V.D., Vasil’ev, L.A., Dzyubinskaya, E.V, Kiselevskii, D.B., and Nesov, A.V., Biochemistry (Moscow), 2010, vol. 75, no. 2, pp. 257–263.

    Article  CAS  Google Scholar 

  28. Kolupaev, Yu.E., Yastreb, T.O., Shvidenko, N.V., and Karpets, Yu.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 500–505.

    Article  CAS  Google Scholar 

  29. Yang, W., Zhu, C., Ma, X., Li, G., Gan, L., Ng, D., and Xia, K., Plos One, 2013, vol. 8, no. 12, p. e84580.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Glyan'ko, A.K., Makarova, L.E., Vasil’eva, G.G., and Mironova, N.V., Biol. Bull. (Moscow), 2005, vol. 32, no. 3, pp. 245–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Yastreb.

Additional information

Original Russian Text © T.O. Yastreb, Yu.E. Kolupaev, A.A. Lugovaya, A.P. Dmitriev, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 6, pp. 635–641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastreb, T.O., Kolupaev, Y.E., Lugovaya, A.A. et al. Hydrogen peroxide-induced salt tolerance in the Arabidopsis salicylate-deficient transformants NahG. Appl Biochem Microbiol 53, 719–724 (2017). https://doi.org/10.1134/S000368381706014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381706014X

Keywords

Navigation