Skip to main content
Log in

Effect of 24-Epicastasterone and Its Monosalicylate on Salt Resistance of Arabidopsis thaliana Wild Type and the Salicylate-Deficit NahG Transformants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of 24-epicastasterone (EC) and those of its conjugate with a salicylic acid residue—24‑epicastasterone 2-monosalicylate (MSEC)—on the resistance of Arabidopsis thaliana L. plants to 24-h contact with 175 mM NaCl were assessed. The wild type Col-0 plants and those transformed with the bacterial NahG gene of salicylate hydroxylase were compared in this respect. The pretreatment of the wild plants with 0.01–1 µM EC elevated their salt resistance, which was expressed as the decrease in their LPO rate, stabilization of the chlorophyll pool, and increase in the carotenoid level after the plants’ exposure to NaCl. MSEC also afforded a protective and more pronounced effect on the Col-0 plants. In the salt-stressed wild type plants, EC enhanced the activities of antioxidant enzymes catalase and guaiacol peroxidase; the treatment with MSEC significantly activated superoxide dismutase and catalase. Meanwhile, neither EC nor MSEC influenced the activities of the antioxidant enzymes in the NahG plants that are unable to accumulate salicylic acid. In addition, neither EC nor MSEC changed the LPO intensity and the level of photosynthetic enzymes under salt stress. It was inferred that salicylic acid is involved in the mechanism of the protective action of brassinosteroids against consequences of the strong salinization. MSEC is considered to be a practically prospective agent promoting salt resistance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bajguz, A., Brassinosteroids—occurrence and chemical structures in plants, in Brassinosteroids: A Class of Plant Hormone, Hayat, S. and Ahmad, A., Eds., New York: Springer-Verlag, 2011, p. 1. https://doi.org/10.1007/978-94-007-0189-2_1

  2. Nolan, T., Chen, J., and Yin, Y., Cross-talk of brassinosteroid signaling in controlling growth and stress responses, Biochem. J., 2017, vol. 474, p. 2641. https://doi.org/10.1042/BCJ20160633

    Article  CAS  PubMed  Google Scholar 

  3. Efimova, M.V., Khripach, V.A., Boyko, E.V., Malofiy, M.K., Kolomeychuk, L.V., Murgan, O.K., Vidershpan, A.N., Mukhamatdinova, E.A., and Kuznetsov, Vl.V., The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance, Dokl. Biol. Sci., 2018, vol. 478, p. 33. https://doi.org/10.1134/S0012496618010106

    Article  CAS  PubMed  Google Scholar 

  4. Kolomeichuk, L.V., Danilova, E.D., Khripach, V.A., Zhabinskyi, V.N., Kuznetsov, Vl.V., and Efimova, M.V., Ability of lactone- and ketone-containing brassinosteroids to induce priming in rapeseed plants to salt stress, Russ. J. Plant Physiol., 2021, vol. 68, p. 499. https://doi.org/10.1134/S1021443721020084

    Article  CAS  Google Scholar 

  5. Efimova, M.V., Hasan, J.A.K., Kholodova, V.P., Kuznetsov, V.V., Savchuk, A.L., Litvinovskaya, R.P., and Khripach, V.A., Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids, Russ. J. Plant Physiol., 2014, vol. 61, p. 733. https://doi.org/10.1134/S1021443714060053

    Article  CAS  Google Scholar 

  6. Nawaz, F., Naeem, M., Zulfiqar, B., Akram, A., Ashraf, M.Y., Raheel, M., Shabbir, R.N., Hussain, R.A., Anwar, I., and Aurangzaib, M., Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 15959. https://doi.org/10.1007/s11356-017-9163-6

    Article  Google Scholar 

  7. Karpets, Yu.V. and Kolupaev, Yu.E., Participation of nitric oxide in 24-epibrassinolide-induced heat resistance of wheat coleoptiles: functional interactions of nitric oxide with reactive oxygen species and Ca ions, Russ. J. Plant Physiol., 2018, vol. 65, p. 177. https://doi.org/10.1134/S1021443718010053

    Article  CAS  Google Scholar 

  8. Ahammed, G.J., Li, X., Liu, A., and Chen, S., Brassinosteroids in plant tolerance to abiotic stress, J. Plant Growth Regul., 2020, vol. 39, p. 1451. https://doi.org/10.1007/s00344-020-10098-0

    Article  CAS  Google Scholar 

  9. Bajguz, A. and Hayat, S., Effects of brassinosteroids on the plant responses to environmental stresses, Plant Physiol. Biochem., 2009, vol. 47, p. 1. https://doi.org/10.1016/j.plaphy.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  10. Kudryakova, N.V., Efimova, M.V., Danilova, M.N., Zubkova, N.K., Khripach, V.A., Kusnetsov, V.V., and Kulaeva, O.N., Exogenous brassinosteroids activate the expression of the genes of cytokinin signaling pathway in transgenic Arabidopsis thaliana, Plant Growth Regul., 2013, vol. 70, p. 61. https://doi.org/10.1007/s10725-012-9778-z

    Article  CAS  Google Scholar 

  11. Allagulova, C.R., Maslennikova, D.R., Avalbaev, A.M., Fedorova, K.A., Yuldashev, R.A., and Shakirova, F.M., Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress, Russ. J. Plant Physiol., 2015, vol. 62, p. 465. https://doi.org/10.1134/S1021443715040020

    Article  CAS  Google Scholar 

  12. Divi, U.K., Rahman, T., and Krishna, P., Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways, BMC Plant Biol., 2010, vol. 10, p. 151. https://doi.org/10.1186/1471-2229-10-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vlot, A.C., Dempsey, D.A., and Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Ann. Rev. Phytopathol., 2009, vol. 47, p. 177. https://doi.org/10.1146/annurev.phyto.050908.135202

    Article  CAS  Google Scholar 

  14. Ahanger, M.A., Ashraf, M., Bajguz, A., and Ahmad, P., Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones, J. Plant Growth Regul., 2018, vol. 37, p. 1007. https://doi.org/10.1007/s00344-018-9855-2

    Article  CAS  Google Scholar 

  15. De Vleesschauwer, D., van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I.R., Vera-Cruz, C., Kikuchi, S., and Höfte, M., Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice, Plant Physiol., 2012, vol. 158, p. 1833. https://doi.org/10.1104/pp.112.193672

  16. Kohli, S.K., Handa, N., Sharma, A., Gautam, V., Arora, S., Bhardwaj, R., Alyemeni, M.N., Wijaya, L., and Ahmad, P., Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings, Protoplasma, 2018, vol. 255, p. 11. https://doi.org/10.1007/s00709-017-1124-x

    Article  CAS  PubMed  Google Scholar 

  17. Hayat, S., Maheshwari, P., Wani, A.S., Irfan, M., Alyemeni, M.N., and Ahmad, A., Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L., Plant Physiol. Biochem., 2012, vol. 53, p. 61. https://doi.org/10.1016/j.plaphy.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  18. Litvinovskaya, R.P., Vayner, A.A., Zhylitskaya, H.A., Kolupaev, Yu.E., Savachka, A.P., and Khripach, V.A., Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid, Chem. Nat. Compd., 2016, vol. 52, p. 452. https://doi.org/10.1007/s10600-016-1671-y

    Article  CAS  Google Scholar 

  19. Guo, D.Y., Zhao, S.Y., Huang, L.L., Ma, C.Y., and Hao, L., Aluminum tolerance in Arabidopsis thaliana as affected by endogenous salicylic acid, Biol. Plant., 2014, vol. 58, p. 725. https://doi.org/10.1007/s10535-014-0439-0

    Article  CAS  Google Scholar 

  20. Guo, B., Liu, C., Liang, Y., Li, N., and Fu, Q., Salicylic acid signals plant defence against cadmium toxicity, Int. J. Mol. Sci., 2019, vol. 20, p. 2960. https://doi.org/10.3390/ijms20122960

    Article  CAS  PubMed Central  Google Scholar 

  21. Cao, Y., Zhan, Z.W., Xue, L. W., Du, J. B., Shang, J., Xu, F., Yuan, S., and Lin, H.H., Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress, Z. Naturforsch. C. J. Biosci., 2009, vol. 64, p. 231. https://doi.org/10.1515/znc-2009-3-414

    Article  CAS  PubMed  Google Scholar 

  22. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Hydrogen peroxide-induced salt tolerance in the Arabidopsis salicylate-deficient transformants NahG, Appl. Biochem. Microbiol., 2017, vol. 53, p. 719. https://doi.org/10.1134/S000368381706014X

    Article  CAS  Google Scholar 

  23. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryalsm, J., Requirement of salicylic acid for the induction of systemic acquired resistance, Science, 1993, vol. 261, p. 754. https://doi.org/10.1126/science.261.5122.754

    Article  CAS  PubMed  Google Scholar 

  24. Gibeaut, D.M., Hulett, J., Cramer, G.R.J., and Seemann, R., Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 1997, vol. 115, p. 317. https://doi.org/10.1104/pp.115.2.317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yastreb, T.O., Kolupaev, Yu.E., Shkliarevskyi, M.A., and Dmitriev, A.P., Participation of jasmonate signaling components in the development of Arabidopsis thaliana’s salt resistance induced by H2S and NO donors, Russ. J. Plant Physiol., 2020, vol. 67, p. 827. https://doi.org/10.1134/S1021443720050192

    Article  CAS  Google Scholar 

  26. Fazlieva, E.R., Kiseleva, I.S., and Zhuikova, T.V., Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the Middle Urals under the influence of copper, Russ. J. Plant Physiol., 2012, vol. 59, p. 333. https://doi.org/10.1134/S1021443712030065

    Article  CAS  Google Scholar 

  27. Shlyk, A.A., Determination of chlorophylls and carotenoids in green leaf extracts, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, p. 154.

  28. Ferrari, S., Plotnikova, J.M., De Lorenzo, G., and Ausubel, F.M., Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4, Plant J., 2003, vol. 35, p. 193. https://doi.org/10.1046/j.1365-313X.2003.01794.x

    Article  CAS  PubMed  Google Scholar 

  29. Nagashima, Y., Iwata, Y., Ashida, M., Mishiba, K., and Koizumi, N., Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis, Plant Cell Physiol., 2014, vol. 55, p. 1772. https://doi.org/10.1093/pcp/pcu108

    Article  CAS  PubMed  Google Scholar 

  30. Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X.H., Chen, H.X., Xu, Q., Ma, C.Y., and Li, G.Z., Salicylic acid-altering Arabidopsis mutants response to salt stress, Plant Soil, 2012, vol. 354, p. 81. https://doi.org/10.1007/s11104-011-1046-x

    Article  CAS  Google Scholar 

  31. van Wees, S.C.M. and Glazebrook, J., Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid, Plant J., 2003, vol. 33, p. 733. https://doi.org/10.1046/j.1365-313x.2003.01665.x

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S., Kim, S.-G., and Park, C.-M., Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis, New Phytol., 2010, vol. 188, p. 626. https://doi.org/10.1111/j.1469-8137.2010.03378.x

    Article  CAS  PubMed  Google Scholar 

  33. Tao, S., Sun, L., Ma, C., Li, L., Li, G., and Hao, L., Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium, Plant Soil, 2013, vol. 372, p. 309. https://doi.org/10.1007/s11104-013-1749-2

    Article  CAS  Google Scholar 

  34. Yu, L.-L., Liu, Y., Zhu, F., Geng, X.-X., Yang, Y., He, Z.-Q., and Xu, F., The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana, Biol. Plant, 2020, vol. 64, p. 150. https://doi.org/10.32615/bp.2019.151

    Article  CAS  Google Scholar 

  35. Kolupaev, Yu.E., Karpets, Yu.V., and Kabashnikova, L.F., Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation (review), Appl. Biochem. Microbiol., 2019, vol. 55, p. 441. https://doi.org/10.1134/S0003683819050089

    Article  CAS  Google Scholar 

  36. Talaat, N.B. and Shawky, B.T., 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant in wheat (Triticum aestivum L.), Acta Physiol. Plant., 2013, vol. 35, p. 729. https://doi.org/10.1007/s11738-012-1113-9

    Article  CAS  Google Scholar 

  37. Vázquez, M.N., Guerrero, Y.R., de la Noval, W.T., González, L.M., and Zullo, M.A.T., Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: a review, Austr. J. Crop Sci., 2019, vol. 13, p. 115. https://doi.org/10.21475/ajcs.19.13.01.p1404

    Article  CAS  Google Scholar 

  38. Radyukina, N.L., Kartashov, A.V., Ivanov, Yu.V., Shevyakova, N.I., and Kuznetsov, Vl.V., Functioning of defense systems in halophytes and glycophytes under progressing salinity, Russ. J. Plant Physiol., 2007, vol. 54, p. 806. https://doi.org/10.1134/S1021443707060131

    Article  CAS  Google Scholar 

  39. Carvalho, K., Campos, M.K., Domingues, D.S., Pereira, L.F., and Vieira, L.G., The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo, Mol. Biol. Rep., 2013, vol. 40, p. 3269. https://doi.org/10.1007/s11033-012-2402-5

    Article  CAS  PubMed  Google Scholar 

  40. Demmig-Adams, B. and Adams, W.W. III, The role of xanthophylls cycle carotenoids in the protection of photosynthesis, Trends Plant Sci., 1996, vol. 1, p. 21. https://doi.org/10.1016/S1360-1385(96)80019-7

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank T.O. Yastreb for the valuable methodical consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kolupaev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Abbreviations: BS—brassinosteroids; CAT—catalase; EC—24‑epicastasterone; GPO—guaiacol peroxidase; MSEC—24‑epicastasterone 2-monosalicylate; SA—salicylic acid; SOD superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinovskaya, R.P., Shkliarevskyi, M.A., Kolupaev, Y.E. et al. Effect of 24-Epicastasterone and Its Monosalicylate on Salt Resistance of Arabidopsis thaliana Wild Type and the Salicylate-Deficit NahG Transformants. Russ J Plant Physiol 69, 35 (2022). https://doi.org/10.1134/S1021443722020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722020108

Keywords:

Navigation