Skip to main content
Log in

Glycosylation and sulfation of 4-methylumbelliferone by Gliocladium deliquescens NRRL 1086

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The aim of the study was to expand the substrate scope of Gliocladium deliquescens NRRL 1086 and generate coumarin glycosides using 4-methylumbelliferone (4-MU) as a substrate. The obtained results indicated that 4-MU can be metabolized to its glucoside (M1) and sulfate conjugate (M2), and the structures of the metabolites were elucidated by spectroscopic or enzymatic methods. Time course experiments detected that nearly 90% of 4-MU could be metabolized within 24 h, and the maximum yield of M1 could reach as high as 32%. Further tests revealed that the glucose concentration in the medium had little effect on the yield of M1 but time of 4-MU-adding could markedly affect the glycosylation procedure, and the favorable time to accumulate M1 was in the 12 or 24 h-old stage II culture, while in the 36 h-old or even older stage II culture, the substrate was almost metabolized to M2. The attempts to alter the ratio between M1 and M2 were performed by addition of quercetin and S-tetrahydroberberrubine or reduction of the sulfate concentration in the culture medium. Herein we describe, to the best of our knowledge, the first example of simultaneously microbial glycosylation and sulfation of coumarins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoult, J.R.S. and Paya, M., Gen. Pharmacol, 1996, vol. 27, no. 4, pp. 713–722.

    Article  CAS  PubMed  Google Scholar 

  2. Borges, F., Roleira, F., Milhazes, N., Santana, L., and Uriarte, E., Curr. Med. Chem., 2005, vol. 12, no. 8, pp. 887–916.

    Article  CAS  PubMed  Google Scholar 

  3. Karbownik, M.S. and Nowak, J.Z., Pharmacol. Rep., 2013, vol. 65, no. 5, pp. 1056–1074.

    Article  CAS  PubMed  Google Scholar 

  4. Benitez, A., Yates, T.J., Shamaldevi, N., Bowen, T., and Lokeshwar, V.B., J. Urology, 2013, vol. 190, no. 1, pp. 285–290.

    Article  CAS  Google Scholar 

  5. Kakizaki, I., Kojima, K., Takagaki, K., Endo, M., Kannagi, R., Ito, M., et al., J. Biol. Chem., 2004, vol. 279, no. 32, pp. 33281–33289.

    Article  CAS  PubMed  Google Scholar 

  6. Urakawa, H., Nishida, Y., Wasa, J., Arai, E., Zhuo, L., Kimata, K., et al., Int. J. Cancer, 2012, vol. 130, no. 2, pp. 454–466.

    Article  CAS  PubMed  Google Scholar 

  7. Thuan, N.H. and Sohng, J.K., J. Ind. Microbiol. Biot., 2013, vol. 40, no. 12, pp. 1329–1356.

    Article  Google Scholar 

  8. Kren, V. and Martínková, L., Curr. Med. Chem., 2001, vol. 8, no. 11, pp. 1303–1328.

    Article  CAS  PubMed  Google Scholar 

  9. Lacy, A. and O’Kennedy, R., Curr. Pharm. Des., 2004, vol. 10, no. 30, pp. 3797–3811.

    Article  CAS  PubMed  Google Scholar 

  10. Fylaktakidou, K.C., Hadjipavlou–Litina, D.J., Litinas, K.E., and Nicolaides, D.N., Curr. Pharm. Des., 2004, vol. 10, no. 30, pp. 3813–3833.

    Article  CAS  PubMed  Google Scholar 

  11. Zahri, S., Razavi, S.M., and Moatamed, Z., Nat. Prod. Res., 2012, vol. 26, no. 6, pp. 540–547.

    Article  CAS  PubMed  Google Scholar 

  12. Touisni, N., Maresca, A., McDonald, P.C., Lou, Y., Scozzafava, A., Dedhar, S., et al., J. Med. Chem., 2011, vol. 54, no. 24, pp. 8271–8277.

    Article  CAS  PubMed  Google Scholar 

  13. Woodley, J.M., Trends Biotechnol., 2008, vol. 26, no. 6, pp. 321–327.

    Article  CAS  PubMed  Google Scholar 

  14. Pollard, D.J. and Woodley, J.M., Trends Biotechnol., 2007, vol. 25, no. 2, pp. 66–73.

    Article  CAS  PubMed  Google Scholar 

  15. Li, W., Koike, K., Asada, Y., Yoshikawa, T., and Nikaido, T., Tetrahedron Lett., 2002, vol. 43, no. 32, pp. 5633–5635.

    Article  CAS  Google Scholar 

  16. Xue, B.L., Zhou, L.B., Liu, J.W., and Yu, R.M., Pharmazie, 2012, vol. 67, no. 5, pp. 467–471.

    CAS  PubMed  Google Scholar 

  17. Zhou, L.B., Tian, T., Xue, B.L., Song, L.Y., Liu, L., and Yu, R.M., Biosci. Biotechnol., Biochem., 2012, vol. 76, no. 5, pp. 1008–1010.

    Article  CAS  Google Scholar 

  18. Chen, N.-D., Zhang, J., Liu, J.-H., and Yu, B.-Y., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 2, pp. 491–497.

    Article  PubMed  Google Scholar 

  19. Ge, H.-X., Zhang, J., Kai, C., Liu, J.-H., and Yu, B.-Y., Appl. Microbiol. Biotechnol., 2012, vol. 93, no. 6, pp. 2357–2364.

    Article  CAS  PubMed  Google Scholar 

  20. Du, C.H., Zhang, J., Xu, S.H., Wang, X.D., Kou, J.P., and Yu, B.Y., J. Mol. Catal. B: Enzym., 2014, vol. 99, pp. 85–88.

    Article  CAS  Google Scholar 

  21. Ge, H.-X., Zhang, J., Dong, Y., Cui, K., and Yu, B.-Y., Chem. Commun., 2012, vol. 48, no. 49, pp. 6127–6129.

    Article  CAS  Google Scholar 

  22. Betts, R.E., Walters, D.E., and Rosazza, J.P., J. Med. Chem., 1974, vol. 17, no. 6, pp. 599–602.

    Article  CAS  PubMed  Google Scholar 

  23. Golbeck, J.H. and Cox, J.C., Biotechnol. Bioeng., 1984, vol. 26, no. 5, pp. 434–441.

    Article  CAS  PubMed  Google Scholar 

  24. Lukey, M.J., Parkin, A., Roessler, M.M., Murphy, B.J., Harmer, J., Palmer, T., et al., J. Biol. Chem., 2010, vol. 285, no. 6, pp. 3928–3938.

    Article  CAS  PubMed  Google Scholar 

  25. Williams, S.J., Senaratne, R.H., Mougous, J.D., Riley, L.W., and Bertozzi, C.R., J. Biol. Chem., 2002, vol. 277, no. 36, pp. 32606–32615.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L.–Q. and James, M.O., Curr. Drug. Metab., 2006, vol. 7, no. 1, pp. 83–104.

    Article  PubMed  Google Scholar 

  27. Tranchimand, S., Tron, T., Gaudin, C., and Iacazio, G., FEMS Microbiol. Lett., 2005, vol. 253, no. 2, pp. 289–294.

    Article  CAS  PubMed  Google Scholar 

  28. Medina, M.L., Kiernan, U.A., and Francisco, W.A., Fungal. Genet. Biol., 2004, vol. 41, no. 3, pp. 327–335.

    Article  CAS  PubMed  Google Scholar 

  29. Fia, G., Giovani, G., and Rosi, I., J. Appl. Microbiol., 2005, vol. 99, no. 3, pp. 509–517.

    Article  CAS  PubMed  Google Scholar 

  30. Kwapiszewski, R., Skolimowski, M., Ziolkowska, K., Jedrych, E., Chudy, M., Dybko, A., and Brzozka, Z., Biomed. Microdevices, 2011, vol. 13, no. 3, pp. 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franco, P.G., Pérez, M.J., Aranda, C., Adamo, A., and Silvestroff, L., Clin. Chim. Acta., 2015, vol. 446, pp. 86–92.

    Article  CAS  PubMed  Google Scholar 

  32. Smith, R.V. and Rosazza, J.P., J. Pharm. Sci., 1975, vol. 64, no. 11, pp. 1737–1759.

    Article  CAS  PubMed  Google Scholar 

  33. Griffiths, D.A., Best, D.J., and Jezequel, S.G., Appl. Microbiol. Biotechnol., 1991, vol. 35, no. 3, pp. 373–381.

    Article  CAS  PubMed  Google Scholar 

  34. Rosazza, J.P., Kammer, M., Youel, L., Smith, R.V., Erhardt, P.W., Truong, D.H., and Leslie, S.W., Xenobiotica, 1977, vol. 7, no. 3, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Fan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, N., Du, C.H., Xu, J.Q. et al. Glycosylation and sulfation of 4-methylumbelliferone by Gliocladium deliquescens NRRL 1086. Appl Biochem Microbiol 53, 85–93 (2017). https://doi.org/10.1134/S0003683817010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817010033

Keywords

Navigation