Skip to main content
Log in

Putative GalP, XylE, and FucP H+ symporters from Pantoea ananatis are capable of transporting glucose into Escherichia coli cells

  • Producers, Biology, Selection, and Genetic Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The involvement of presumably low-affinity H+ symporter GalP in the glucose uptake by Pantoea ananatis cells was demonstrated. The putative galP, xylE, and fucP genes from P. ananatis AJ13355—orthologs of the known E. coli genes for H+ symporters of D-galactose, D-xylose, and L-fucose, respectively, were cloned. It was confirmed that the constitutive expression of each of the cloned genes restored the deleted E. coli MG1655Δ(ptsHI-crr) strain growth on D-glucose. The constructed integrative cassettes, providing the constitutive expression of the galP, xylE, and fucP genes from P. ananatis, could be used for the optimization of glucose consumption in producing strains based on P. ananatis or E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VKPM:

All-Russia Collection of Industrial Microorganisms, Research Institute of Genetics (GosNIIgenetika), Moscow

OD:

optical density

PCR:

polymerase chain reaction

LB medium:

Luria-Bertani medium

CRP:

catabolic repressor protein

GalP,XylE, and FucP:

low-affinity H+ symporters of D-galactose, D-xylose, and L-fucose, respectively

G6P:

glucose 6-phosphate

mGDH:

membrane-bound glucose dehydrogenase

ORF:

open reading frame

PEP:

phosphoenolpyruvate

PTS:

phosphoenolpyruvate-dependent phosphotransferase system

PQQ:

pyrrolequinoline quinone

References

  1. Saier, M.H., Microbiol. Rev., 1989, vol. 53, pp. 109–120.

    PubMed  CAS  Google Scholar 

  2. Postma, P.W., Lengeler, J.W., Jakobson, G.R., Microbiol. Rev., 1993, vol. 57, no. 3, pp. 543–594.

    PubMed  CAS  Google Scholar 

  3. Simoni, R.D., Roseman, S., Saier, M.H., Jr., J. Biol. Chem., 1976, vol. 10, no. 251 (21), pp. 6584–6597.

    Google Scholar 

  4. Slivinskaya, E.A., Rybak, K.V., Katashkina, Zh.I., Mashko, S.V., and Kozlov, Yu.I., Biotekhnologiya, 2007, no. 5, pp. 24–27.

    Google Scholar 

  5. Curtis, S.J. and Epstein, W., J. Bacteriol., 1975, vol. 122, pp. 1189–1199.

    PubMed  CAS  Google Scholar 

  6. Flores, N., Leal, L., Sigala, J.C., de Anda, R., Escalante, A., Martinez, A., Ramirez, O.T., Gosset, G., and Bolivar, F., J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 105–116.

    Article  PubMed  CAS  Google Scholar 

  7. Flores, N., Xiao, J., Berry, A., Bolivar, F., and Valle, F., Nat. Biotechnol., 1996, vol. 14, pp. 620–623.

    Article  PubMed  CAS  Google Scholar 

  8. Hernandez-Montalvo, V., Martinez, A., Hernandez-Chavez, G., Bolivar, F., Valle, F., and Gosset, G., Biotechnol. Bioeng., 2003, vol. 83, pp. 687–694.

    Article  PubMed  CAS  Google Scholar 

  9. Baez-Viveros, J.L., Osuna, J., Herma’ndez-Cha’vez, G., Sobero’n, X., Bolivar, F., and Gosset, G., Biotechnol. Bioeng., 2004, vol. 87, pp. 516–524.

    Article  PubMed  CAS  Google Scholar 

  10. Henderson, P.J., Giddens, R.A., and Jones-Mortimer, M.C., Biochem. J., 1977, vol. 15, no. 162 (2), pp. 309–320.

    Google Scholar 

  11. Mokhova, O.N., Kuvaeva, T.M., Golubeva, L.I., Katashkina, J.I., and Kolokolova, A.V., Patent Application no. WO2010038905 A1, 2010.

  12. Hara, Y., Kadotani, N., Izui, H., Katashkina, J.I., Kuvaeva, T.M., Andreeva, I.G., Golubeva, L.I., Malko, D.B., Makeev, V.J., Mashko, S.V., and Kozlov, Y.I., Appl. Microbiol. Biotechnol., 2011, vol. 93, no. 1, pp. 331–341.

    Article  PubMed  CAS  Google Scholar 

  13. Katashkina, J.I., Hara, Y., Golubeva, L.I., Andreeva, I.G., Kuvaeva, T.M., and Mashko, S.V., BMC Mol. Biol., 2009, vol. 10, p. 34.

    Article  PubMed  Google Scholar 

  14. Blattner, F.R., Plunkett, G., III., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., and Shao, Y., Science, 1997, vol. 277, pp. 1553–1462.

    Article  Google Scholar 

  15. Minaeva, N.I., Gak, E.R., Zimenkov, D.V., Skorokhodova, A.Y., Biryukova, I.V., and Mashko, S.V., BMC Biotechnol., 2008, vol. 8, p. 63. doi: 10.1186/1472-6750-8-63

    Article  PubMed  Google Scholar 

  16. Haldimann, A. and Wanner, B.L., J. Bacteriol., 2001, vol. 183, pp. 6384–6393.

    Article  PubMed  CAS  Google Scholar 

  17. Andreeva, I.G., Golubeva, L.I., Katashkina, J.I., Kuvaeva, T.M., and Mashko, S.V., FEMS Microbiol. Letts., 2011, vol. 318, pp. 55–60.

    Article  CAS  Google Scholar 

  18. Skorokhodova, A.Yu., Katashkina, Zh.I., Zimenkov, D.V., Smirnov, S.V., Gulevich, A.Yu., Biryukova, I.V., and Mashko, S.V., Biotekhnologiya, 2004, no. 5, pp. 3–21.

    Google Scholar 

  19. Sambrook, J. and Russell, D.W., Molecular Cloning: Laboratory Manual, 3rd ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.

    Google Scholar 

  20. Cheng, X. and Patterson, T.A., Nucleic Acids Res., 1992, vol. 20, no. 17, pp. 4591–4598.

    Article  PubMed  CAS  Google Scholar 

  21. Csiszovszki, Z., Krishna, S., Orosz, L., Adhya, S., and Sesey, S., mBio, 2011, vol. 2, no. 4, e00053–11.

    Article  PubMed  CAS  Google Scholar 

  22. http://ncbi.nlm.nih.gov

  23. Fry, J., Wood, M., and Poole, P.S., Mol. Plant.-Microbe Interact., 2001, vol. 14, no. 8, pp. 1016–1025.

    Article  PubMed  CAS  Google Scholar 

  24. Bahar, M., de Majnik, J., Wexler, M., Fry, J., Poole, P.S., and Murphy, P.J., MPMI, 1998, vol. 11, no. 11, pp. 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  25. Countinho, T.A. and Venter, S., Mol. Plant Pathol., 2009, vol. 10, no. 3, pp. 325–335.

    Article  Google Scholar 

  26. Fischer, H., Meyer, A., Fischer, K., and Kuzyakov, Y., Soil Biol. Biochem., 2007, vol. 39, pp. 2926–2935.

    Article  CAS  Google Scholar 

  27. Martens, D.A. and Loeffelmann, K.L., Soil Biol. Biochem., 2002, vol. 34, pp. 1393–1399.

    Article  CAS  Google Scholar 

  28. Mergaert, J., Verdonck, L., and Kersters, K., IJSEM, 1993, vol. 43, no. 1, pp. 162–173.

    Google Scholar 

  29. McDonadl, T.P., Walsley, A.R., and Henderson, P.F., J. Biol. Chem., 1997, vol. 272, no. 24, pp. 15189–15199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Andreeva.

Additional information

Original Russian Text © I.G. Andreeva, L.I. Golubeva, J.I. Katashkina, 2012, published in Biotekhnologiya, 2012, No. 2, pp. 21–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreeva, I.G., Golubeva, L.I. & Katashkina, J.I. Putative GalP, XylE, and FucP H+ symporters from Pantoea ananatis are capable of transporting glucose into Escherichia coli cells. Appl Biochem Microbiol 49, 638–645 (2013). https://doi.org/10.1134/S0003683813070016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813070016

Keywords

Navigation