Skip to main content
Log in

Effect of salts and Triton X-100 on ultrafiltration purification and properties of extracellular glucose oxidase from Penicillium adametzii LF F-2044.1

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We compared the effectiveness of glucose oxidase isolation from the culture fluid of Penicillium adametzii LF F-2044.1 in the presence of ammonium sulfate, ammonium chloride, and Triton X-100. Ammonium chloride inhibited glucose oxidase in the culture fluid. This compound increased K M (by 1.2–1.3 times), but decreased V max for D-glucose oxidation (by 1.7–1.8 times). Ammonium sulfate had little effect on kinetic parameters. Combined treatment with salts and Triton X-100 was followed by a significant increase in the effectiveness of ultrafiltration purification of the culture fluid. The samples of glucose oxidase were electrophoretically characterized. The dependence of kinetic parameters on glucose oxidase concentration during oxidation of D-glucose was evaluated. The catalytic constant and k cat/K M ratio for glucose oxidase samples from the culture fluid isolated in the presence of additives significantly surpassed those for enzyme samples, which were obtained by ultrafiltration of the culture fluid with no additives and chromatography on aluminum oxide. The activity of glucose oxidase isolated from the culture fluid in the presence of ammonium chloride was lower compared to that of the enzyme obtained in the presence of ammonium sulfate. This agent is preferable for ultrafiltration of the culture fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GO:

glucose oxidase

CD:

circular dichroism

CF:

culture fluid filtrate

SAS:

surface-active substance

UFM:

ultrafiltration membrane

References

  1. Crueger, A. and Crueger, W., in Microbial Enzymes and Biotechnology, Fogarty, W.M. and Kelly, C.T., Eds., London: Elsevier, 1990, pp. 177–226.

    Google Scholar 

  2. Mikhailova, R.V., Lobanok, A.G., Shishko, Zh.F., and Yasenko, M.I., Mikol. Fitopatol., 1998, vol. 32, no. 1, pp. 60–64.

    Google Scholar 

  3. Shishko, Zh.F., Mikhailova, R.V., Yasenko, M.I., Lobanok, A.G., Eryomin, A.N., and Metelitza, D.I., Dokl. NAN Belarusi, 2001, vol. 45, no. 3, pp. 78–81.

    Google Scholar 

  4. Shishko, Zh.F., Mikhailova, R.V., Eryomin, A.N., Yasenko, M.I., Lobanok, A.G., and Metelitza, D.I., Vestsi NAN Belarusi, Ser. Biol., 2001, no. 3, pp. 52–56.

  5. Semashko, T.V., Mikhailova, R.V., and Eryomin, A.N., Prikl. Biokhim. Mikrobiol., 2003, vol. 39, no. 4, pp. 419–426.

    PubMed  CAS  Google Scholar 

  6. Bil’dyukevich, A.V., Ostrovskii, E.G., and Kaputskii, F.N., Kolloidn. Zh., 1989, vol. 51, no. 1, pp. 133–137.

    Google Scholar 

  7. Salgin, S., Takac, S., and Ozdamar, T.N., J. Colloid Interface Sci., 2006, vol. 299, no. 2, pp. 806–814.

    Article  PubMed  CAS  Google Scholar 

  8. Kalisz, H.M., Hendle, J., and Schmid, R.D., Appl. Environ. Microbiol., 1997, vol. 47, no. 5, pp. 502–507.

    CAS  Google Scholar 

  9. Sawyer, W.H. and Puckridge, J., J. Biol. Chem., 1973, vol. 248, no. 24, pp. 8429–8433.

    PubMed  CAS  Google Scholar 

  10. Prakash, V. and Nandi, P.K., J. Biol. Chem., 1977, vol. 252, no. 1, pp. 240–243.

    PubMed  CAS  Google Scholar 

  11. Poillon, W.N. and Bertles, J.F., J. Biol. Chem., 1979, vol. 254, no. 9, pp. 3462–3467.

    PubMed  CAS  Google Scholar 

  12. Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., and Schomburg, D., J. Mol. Biol., 1993, vol. 229, no. 1, pp. 153–172.

    Article  PubMed  CAS  Google Scholar 

  13. Witt, S., Singh, M., and Kalisz, H.M., Appl. Environ. Microbiol., 1998, vol. 64, no. 4, pp. 1405–1411.

    PubMed  CAS  Google Scholar 

  14. Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H.M., and Hecht, H.J., Acta Crystallogr. Sect. D: Biol. Crystallogr, 1999, vol. 55, no. 5, pp. 969–977.

    Article  CAS  Google Scholar 

  15. Witt, S., Wohlfahrt, G., Schomburg, D., Hecht, H.J., and Kalisz, H.M., Biochem. J., 2000, vol. 347, no. 2, pp. 553–559.

    Article  PubMed  CAS  Google Scholar 

  16. Ahmad, A., Akhtar, M.S., and Bhakuni, V., Biochemistry, 2001, vol. 40, no. 7, pp. 1945–1955.

    Article  PubMed  CAS  Google Scholar 

  17. Akhtar, M.S., Ahmad, A., and Bhakuni, V., Biochemistry, 2002, vol. 41, no. 22, pp. 7142–7149.

    Article  PubMed  CAS  Google Scholar 

  18. Ye, W.-N. and Combes, D., Biochim. Biophys. Acta, 1989, vol. 999, no. 1, pp. 86–93.

    PubMed  CAS  Google Scholar 

  19. Shima, S., Tziatzios, C., Schubert, D., Fukada, H., Takahashi, K., Ermler, U., and Thauer, R.K., Eur. J. Biochem., 1998, vol. 258, no. 1, pp. 85–92.

    Article  PubMed  CAS  Google Scholar 

  20. Rinuy, J., Brevet, P.F., and Girault, H.H., Biophys. J., 1999, vol. 77, no. 6, pp. 3350–3355.

    Article  PubMed  CAS  Google Scholar 

  21. Jones, M.N., Manley, P., and Wilkinson, A., Biochem. J., 1982, vol. 203, no. 1, pp. 285–291.

    PubMed  CAS  Google Scholar 

  22. Gromada, A. and Fiedurek, J., Acta Microbiol. Pol., 1996, vol. 45, no. 1, pp. 37–43.

    PubMed  CAS  Google Scholar 

  23. Yoshimoto, M., Wang, S., Fukunaga, K., Walde, P., Kuboi, R., and Nakao, K., Biotechnol. Bioeng., 2003, vol. 81, no. 6, pp. 695–704.

    Article  PubMed  CAS  Google Scholar 

  24. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  26. Bohm, G., Muhr, R., and Jaenicke, R., Protein Eng., 1992, vol. 5, no. 3, pp. 191–195.

    Article  PubMed  CAS  Google Scholar 

  27. Markwell, J., Frakes, L.-J., Brott, E.C., Osterman, J., and Wagner, F.W., Appl. Microbiol. Biotechnol., 1989, vol. 30, no. 2, pp. 166–169.

    Article  CAS  Google Scholar 

  28. Yoshimura, T. and Isemura, T., J. Biochem. (Tokyo), 1971, vol. 69, no. 5, pp. 839–846.

    CAS  Google Scholar 

  29. Collins, K.D., Methods, 2004, vol. 34, no. 3, pp. 300–311.

    Article  PubMed  CAS  Google Scholar 

  30. Frisvad, J.C. and Filtenborg, O., Appl. Environ. Microbiol., 1983, vol. 46, no. 6, pp. 1301–1310.

    PubMed  CAS  Google Scholar 

  31. Frisvad, J.C., Arch. Environ. Contam. Toxicol., 1989, vol. 18, no. 3, pp. 452–467.

    Article  PubMed  CAS  Google Scholar 

  32. Eryomin, A.N., Makarenko, M.V., Zhukovskaya, L.A., and Mikhailova, R.V., Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 3, pp. 345–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Eryomin.

Additional information

Original Russian Text © A.N. Eryomin, L.A. Zhukovskaya, R.V. Mikhailova, 2009, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 3, pp. 277–286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eryomin, A.N., Zhukovskaya, L.A. & Mikhailova, R.V. Effect of salts and Triton X-100 on ultrafiltration purification and properties of extracellular glucose oxidase from Penicillium adametzii LF F-2044.1. Appl Biochem Microbiol 45, 248–257 (2009). https://doi.org/10.1134/S0003683809030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683809030028

Keywords

Navigation