Skip to main content
Log in

Maximal and Riesz Potential Operators in Double Phase Lorentz Spaces of Variable Exponents

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In the present note, we discuss the boundedness of maximal and Riesz potential operators in double-phase Lorentz spaces of variable exponents defined by a symmetric decreasing rearrangement in the sense of Almut [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Almut, Rearrangement Inequalities, in Lecture Notes (June 2009).

    Google Scholar 

  2. V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986).

    MathSciNet  Google Scholar 

  3. P. Baroni, M. Colombo, and G. Mingione, “Non-autonomous functionals, borderline cases and related function classes,” St Petersburg Math. J. 27, 347–379 (2016).

    Article  MathSciNet  Google Scholar 

  4. M. Colombo and G. Mingione, “Regularity for double phase variational problems,” Arch. Rat. Mech. Anal. 215, 443–496 (2015).

    Article  MathSciNet  Google Scholar 

  5. M. Colombo and G. Mingione, “Bounded minimizers of double phase variational integrals,” Arch. Rat. Mech. Anal. 218, 219–273 (2015).

    Article  Google Scholar 

  6. P. Baroni, M. Colombo, and G. Mingione, “Regularity for general functionals with double phase,” Calc. Var. 57, 62 (2018).

    Article  MathSciNet  Google Scholar 

  7. P. Hästö and J. Ok, “Calderón-Zygmund estimates in generalized Orlicz spaces,” J. Differential Equations 267 (5), 2792–2823 (2019).

    Article  MathSciNet  Google Scholar 

  8. P. Shin, “Calderón-Zygmund estimates for general elliptic operators with double phase,” Nonlinear Anal. 194, 111409 (2020).

    Article  MathSciNet  Google Scholar 

  9. F. Colasuonno and M. Squassina, “Eigenvalues for double phase variational integrals,” Ann. Mat. Pura Appl. 195 (6), 1917–1959 (2016).

    Article  MathSciNet  Google Scholar 

  10. P. Hästö, “The maximal operator on generalized Orlicz spaces,” J. Funct. Anal. 271 (1), 240–243 (2016).

    Article  MathSciNet  Google Scholar 

  11. F.- Y. Maeda, Y. Mizuta, T. Ohno, and T. Shimomura, “Sobolev’s inequality inequality for double phase functionals with variable exponents,” Forum Math. 31 (2), 517–527 (2019).

    Article  MathSciNet  Google Scholar 

  12. Y. Mizuta, T. Ohno, and T. Shimomura, “Sobolev’s theorem for double phase functionals,” Math. Inequal. Appl. 23 (1), 17–33 (2020).

    MathSciNet  MATH  Google Scholar 

  13. C. De Filippis and J. Oh, “Regularity for multi-phase variational problems,” J. Differential Equations 267 (3), 1631–1670 (2019).

    Article  MathSciNet  Google Scholar 

  14. P. Harjulehto and P. Hästö, “Boundary regularity under generalized growth conditions,” Z. Anal. Anwend. 38 (1), 73–96 (2019).

    Article  MathSciNet  Google Scholar 

  15. Y. Mizuta, T. Ohno, and T. Shimomura, “Herz-Morrey spaces on the unit ball with variable exponent approaching \(1\) and double phase functionals,” Nagoya Math. J. 242, 1–34 (2021).

    Article  MathSciNet  Google Scholar 

  16. Y. Mizuta and T. Shimomura, “Boundary growth of Sobolev functions for double phase functionals,” Ann. Acad. Sci. Fenn. Math. 45, 279–292 (2020).

    Article  MathSciNet  Google Scholar 

  17. B. Almut, “Cases of equality in the Riesz rearrangement inequality,” Ann. of Math. 143 (3 (2)), 499–527 (1996).

    MathSciNet  MATH  Google Scholar 

  18. B. Almut and H. Hichem, “Rearrangement inequalities for functionals with monotone integrands,” J. Funct. Anal. 233 (2), 561–582 (2006).

    Article  MathSciNet  Google Scholar 

  19. Y. Mizuta, Potential Theory in Euclidean Spaces (Gakk\(\overline{\text{o}}\)tosho, Tokyo, 1996).

    MATH  Google Scholar 

  20. L. Ephremidze, V. Kokilashvili, and S. Samko, “Fractional, maximal and singular operators in variable exponent Lorentz spaces,” Fract. Calc. Appl. Anal. 11 (4), 407–420 (2008).

    MathSciNet  MATH  Google Scholar 

  21. Y. Mizuta and T. Ohno, “Sobolev’s inequality for Riesz potentials in Lorentz spaces of variable exponent,” J. Math. Soc. Japan 67 (2), 433–452 (2015).

    Article  MathSciNet  Google Scholar 

  22. L. Diening, “Maximal functions on generalized \(L^{p(\cdot )}\) spaces,” Math. Inequal. Appl. 7 (2), 245–254 (2004).

    MathSciNet  MATH  Google Scholar 

  23. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, “The maximal function on variable \(L^{p}\) spaces,” Ann. Acad. Sci. Fenn. Math. 29, 247–249 (2004).

    MathSciNet  MATH  Google Scholar 

  24. P. Hästö and L. Diening, “Muckenhoupt weights in variable exponent spaces,” Preprint.

    Google Scholar 

  25. D. Cruz-Uribe, L. Diening, and P. Hästö, “The maximal operator on weighted variable Lebesgue spaces,” Fract. Calc. Appl. Anal. 14 (3), 361–374 (2011).

    Article  MathSciNet  Google Scholar 

  26. L. I. Hedberg, “On certain convolution inequalities,” Proc. Amer. Math. Soc. 36, 505–510 (1972).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mizuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuta, Y., Ohno, T. & Shimomura, T. Maximal and Riesz Potential Operators in Double Phase Lorentz Spaces of Variable Exponents. Math Notes 111, 729–735 (2022). https://doi.org/10.1134/S0001434622050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622050066

Keywords

Navigation