Skip to main content
Log in

\(\mathrm P=\mathrm W\) Phenomena

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we describe recent work towards the mirror \(\mathrm P=\mathrm W\) conjecture, which relates the weight filtration on the cohomology of a log Calabi–Yau manifold to the perverse Leray filtration on the cohomology of the homological mirror dual log Calabi–Yau manifold taken with respect to the affinization map. This conjecture extends the classical relationship between Hodge numbers of mirror dual compact Calabi–Yau manifolds, incorporating tools and ideas which appear in the fascinating and groundbreaking works of de Cataldo, Hausel, and Migliorini [1] and de Cataldo and Migliorini [2]. We give a broad overview of the motivation for this conjecture, recent results towards it, and describe how this result might arise from the SYZ formulation of mirror symmetry. This interpretation of the mirror \(\mathrm P=\mathrm W\) conjecture provides a possible bridge between the mirror \(\mathrm P=\mathrm W\) conjecture and the well-known \(\mathrm P=\mathrm W\) conjecture in non-Abelian Hodge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this agrees with the definition of [2] up to a shift by \(j\).

REFERENCES

  1. M. A. A. de Cataldo, T. Hausel and and L. Migliorini, “Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\),” Ann. of Math. (2) 175 (3), 1329–1407 (2012).

    Article  MathSciNet  Google Scholar 

  2. M. A. A. de Cataldo and L. Migliorini, “The perverse filtration and the Lefschetz hyperplane theorem,” Ann. of Math. (2) 171 (3), 2089–2113 (2010).

    Article  MathSciNet  Google Scholar 

  3. M. Kontsevich and Y. Soibelman, “Affine structures and non-Archimedean analytic spaces,” in The Unity of Mathematics, Progr. Math. (Birkhäuser Boston, Boston, MA, 2006), Vol. 244, pp. 321–385.

    Article  MathSciNet  Google Scholar 

  4. M. Gross, P. Hacking and and S. Keel, “Mirror symmetry for log Calabi–Yau surfaces. I,” Publ. Math. Inst. Hautes Études Sci. 122, 65–168 (2015).

    Article  MathSciNet  Google Scholar 

  5. D. Auroux, “Special Lagrangian fibrations, mirror symmetry and Calabi–Yau double covers,” in Géométrie différentielle, physique mathématique, mathématiques et société. I, Astérisque (Soc. Math. France, Paris, 2008), Vol. 321, pp. 99–128.

    MathSciNet  MATH  Google Scholar 

  6. L. Katzarkov, M. Kontsevich and and T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models,” J. Differential Geom. 105 (1), 155–117 (2017).

    Article  MathSciNet  Google Scholar 

  7. A. Harder, L. Katzarkov, and V. Przyjalkowski, Landau–Ginzburg Models and \(\mathrm P=\mathrm W\) Conjecture, Preprint, 2019.

  8. D. Auroux, “Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor,” J. Gökova Geom. Topol. GGT 1, 51–91 (2007).

    MathSciNet  MATH  Google Scholar 

  9. D. Auroux, “Special Lagrangian fibrations, wall-crossing, and mirror symmetry,” in Geometry, Analysis, and Algebraic Geometry, Surv. Differ. Geom. (Int. Press, Somerville, MA, 2008), Vol. 13, pp. 1–47.

    MathSciNet  MATH  Google Scholar 

  10. M. Abouzaid, D. Auroux and and L. Katzarkov, “Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces,” Publ. Math. Inst. Hautes Études Sci. 123, 199–282 (2016).

    Article  MathSciNet  Google Scholar 

  11. C. Simpson, The Dual Boundary Complex of the \(SL_2\) Character Variety of a Punctured Sphere, arXiv: 1504.05395 (2015).

  12. A. Harder, Hodge Numbers of Landau–Ginzburg Models, arXiv: 1708.01174 (2017).

  13. V. Lunts and V. Przyjalkowski, “Landau–Ginzburg Hodge numbers for mirrors of del Pezzo surfaces,” Adv. Math. 329, 189–216 (2018).

    Article  MathSciNet  Google Scholar 

  14. D. Auroux, L. Katzarkov and and D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves,” Inv. Math. 166 (3), 537–582 (2012).

    Article  MathSciNet  Google Scholar 

  15. V. V. Przyjalkowski, “Toric Landau–Ginzburg models,” Russian Math. Surveys 73 (6), 1033–1118 (2018).

    Article  MathSciNet  Google Scholar 

  16. V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds,” Sb. Math. 208 (7), 992–1013 (2017).

    Article  MathSciNet  Google Scholar 

  17. V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds,” Izv. Math. 77 (4), 772–794 (2013).

    Article  MathSciNet  Google Scholar 

  18. V. Przyjalkowski and C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models,” Int. Math. Res. Not. IMRN 2015 (21), 11302–11332 (2015).

    Article  MathSciNet  Google Scholar 

  19. I. Cheltsov and V. Przyjalkowski, Kontsevich–Pantev Conjecture for Fano Threefolds, arXiv: 1809.09218 (2018).

  20. Y. Shamoto, “Hodge–Tate conditions for Landau–Ginzburg models,” Publ. Res. Inst. Math. Sci. 54 (3), 469–518 (2018).

    Article  MathSciNet  Google Scholar 

  21. C. Voisin, Hodge Theory and Complex Algebraic Geometry. I, in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 2002), Vol. 76.

    Book  Google Scholar 

  22. J. Carlson, S. Müller-Stach and and C. Peters, Period Mappings and Period Domains, in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 2003), Vol. 85.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Valery Lunts and Tony Pantev for enlightening conversations.

Funding

A. Harder was supported during part of this work by the Simons Collaboration in Homological Mirror Symmetry. L. Katzarkov was supported by Simons research grant, NSF DMS 150908, ERC Gemis, DMS-1265230, DMS-1201475, OISE-1242272 PASI, Simons collaborative Grant—HMS, Simons investigator grant—HMS; he was supported in part by Laboratory of Mirror Symmetry at National Research University Higher School of Economics, by the Russian Federation Government under grant 14.641.31.0001, and by National Science Fund of Bulgaria, National Scientific Program “Excellent Research and People for the Development of European Science” (VIHREN), project KP-06-DV-7. V. Przyjalkowski was supported in part by Laboratory of Mirror Symmetry at National Research University Higher School of Economics, and by the the Russian Federation Government under grant 14.641.31.0001. He is “Young Russian Mathematics” award winner and would like to thank its sponsors and jury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Katzarkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzarkov, L., Przyjalkowski, V.V. & Harder, A. \(\mathrm P=\mathrm W\) Phenomena. Math Notes 108, 39–49 (2020). https://doi.org/10.1134/S0001434620070044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620070044

Keywords

Navigation