Skip to main content
Log in

Russian studies on clouds and precipitation in 2011–2014

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results obtained in Russian studies on clouds and precipitation in 2011–2014 are presented. These results are part of the Russian National Report on Meteorology and Atmospheric Sciences that was prepared for the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Bezrukova and A. V. Chernokulsky, “Clouds and precipitation,” in Russian National Report: Meteorology and Atmospheric Sciences 2011–2014, Ed. by I. I. Mokhov and A. A. Krivolutsky (GCRAS, Moscow, 2015), pp. 55–97. doi 10.2205/2015IUGG-RU-IAMAS

    Google Scholar 

  2. E. I. Khlebnikova, E. L. Makhotkna, and I. A. Sall’, “Cloudiness and radiative regime on the territory of Russia: Observed climatic changes,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 573, 65–91 (2014).

    Google Scholar 

  3. A. V. Chernokulsky, O. N. Bulygina, and I. I. Mokhov, “Recent variations of cloudiness over Russia from surface daytime observations,” Environ. Res. Lett. 6 (3), 035202 (2011).

    Article  Google Scholar 

  4. E. I. Vetrova, E. N. Skriptunova, and N. P. Shakina, “Low clouds and their forecast at the airports of the European part of the former USSR,” Russ. Meteorol. Hydrol. 38 (1), 6–19 (2013).

    Article  Google Scholar 

  5. V. S. Komarov, S. N. Il’in, A. V. Lavrinenko, et al., “Climate conditions of low clouds over the territory of Siberia and its modern change. Part 1. Features of low clouds conditions,” Opt. Atmos. Okeana 26 (7), 579–583 (2013).

    Google Scholar 

  6. V. S. Komarov, S. N. Il’in, A. V. Lavrinenko, et al., “Climate conditions of low clouds over the territory of Siberia and its modern change. Part 2. Changes of low clouds conditions,” Opt. Atmos. Okeana 26 (7), 584–589 (2013).

    Google Scholar 

  7. V. S. Komarov, G. G. Matvienko, S. N. Il’in, and N. Ya. Lomakina, “Regional features of long-term changes in cloud cover in Siberian sector of Northern hemisphere for the last 45 years (1969–2013),” Atmos. Oceanic Opt. 28 (2), 175–179 (2015).

    Article  Google Scholar 

  8. D. N. Troshkin, M. V. Kabanov, V. E. Pavlov, et al., “Repetition of cloudiness situations and cloud optical thickness over the West-Siberian plain on the basis of ENVISAT data,” Opt. Atmos. Okeana 25 (9), 784–787 (2012).

    Google Scholar 

  9. N. E. Chubarova, E. I. Nezval’, I. B. Belikov, et al., “Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years,” Russ. Meteorol. Hydrol. 39 (9), 602–613 (2014).

    Article  Google Scholar 

  10. N. P. Shakina, E. N. Skriptunova, E. I. Vetrova, et al., “Low cloudiness recurrence on the European territore of the former USSR according to airfield observation data,” Tr. Gidrometeorol. Tsentra Ross., No. 348, 99–129 (2012).

    Google Scholar 

  11. V. S. Komarov, D. P. Nakhtigalova, S. N. Il’in, et al., “Climatic zoning of the Siberia territory according to the total and lower cloudiness conditions as a basis for construction of local cloud atmosphere models. Part 1. Methodical bases,” Opt. Atmos. Okeana 27 (10), 895–898 (2014).

    Google Scholar 

  12. V. S. Komarov, D. P. Nakhtigalova, S. N. Il’in, et al., “Climatic zoning of the Siberia territory according to the total and lower cloudiness conditions as a basis for construction of local cloud atmosphere models. Part 2. The results of climatic zoning,” Opt. Atmos. Okeana 27 (10), 899–905 (2014).

    Google Scholar 

  13. A. V. Chernokulsky and I. I. Mokhov, “Climatology of total cloudiness in the Arctic: An intercomparison of observations and reanalyses,” Adv. Meteorol. 2012 542093 (2012). doi 10.1155/2012/542093

    Article  Google Scholar 

  14. P. Ya. Groisman, T. A. Blyakharchuk, A. V. Chernokulsky, et al., “Climate changes in Siberia,” in Regional Environmental Changes in Siberia and Their Global Consequences, Ed. by P. Ya. Groisman and G. Gutman (Springer, Dordrecht, 2012), pp. 57–109.

    Google Scholar 

  15. M. Lockhoff, O. Zolina, C. Simmer, and J. Schulz, “Evaluation of satellite-retrieved extreme precipitation over Europe using gauge observations,” J. Clim. 27, 607–623 (2014).

    Article  Google Scholar 

  16. O. G. Zolina, “Changes in the duration of synoptic rainy periods in Europe from 1950 to 2008 and their relation to extreme precipitation,” Dokl. Earth Sci. 436 (2), 279–283 (2011).

    Article  Google Scholar 

  17. O. Zolina, “Changes in intense precipitation in Europe,” in Changes in Flood Risk in Europe, Ed. by Z. W. Kundzewicz (CRC, Boca Raton, 2012), pp. 97–119.

    Chapter  Google Scholar 

  18. O. Zolina, “Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network,” Environ. Res. Lett. 9 (2), 025003 (2014).

    Article  Google Scholar 

  19. O. Zolina, C. Simmer, K. P. Belyaev, et al., “Changes in European wet an dry spells over the last decades,” J. Clim. 26, 2022–2047 (2013).

    Article  Google Scholar 

  20. O. Zolina, C. Simmer, A. Kapala, et al., “New view on precipitation variability and extremes in Central Europe from a German high resolution daily precipitation dataset: Results from the STAMMEX project,” Bull. Am. Meteorol. Soc. 95, 995–1002 (2014).

    Article  Google Scholar 

  21. P. Ya. Groisman, E. G. Bogdanova, V. A. Alekseev, et al., “Influence of snowfall measurement errors on atmospheric precipitation amounts and their North Eurasian trends,” Led Sneg, No. 2, 29–43 (2014).

    Google Scholar 

  22. D. Yang and A. Simonenko, “Comparison of winter precipitation measurements by six Tretyakov gauges at the Valdai experimental site,” Atmos.–Ocean 52 (1), 39–53 (2014).

    Article  Google Scholar 

  23. I. V. Kudryavtsev and H. Jungner, “Variations in atmospheric transparency under the action of galactic cosmic rays as a possible cause of their effect on the formation of cloudiness,” Geomagn. Aeron. (Engl. Transl.) 51 (5), 656–663 (2011).

    Article  Google Scholar 

  24. A. V. Murav’ev and I. A. Kulikova, “Interrelation of total precipitation over Eurasia with atmospheric centers of action of the northern hemisphere and with major modes of the North Atlantic surface temperature variability,” Russ. Meteorol. Hydrol. 36 (5), 285–293 (2011).

    Article  Google Scholar 

  25. A. V. Murav’ev and Yu. D. Resnyanskii, “Interrelation of the intraseasonal precipitation variability over Eurasia to the Eliassen-Palm flux characteristics over the Northern Hemisphere,” Russ. Meteorol. Hydrol. 36 (11), 712–722 (2011).

    Article  Google Scholar 

  26. A. A. Onuchin and I. V. Danilova, “Orographic effects of the distribution of atmospheric precipitation on the southern part of near-Yenisei Siberia,” Geogr. Prir. Resur., No. 3, 85–92 (2012).

    Google Scholar 

  27. O. A. Rubtsova, V. A. Kovalenko, and S. I. Molodykh, “Specific features of atmospheric precipitation variations and their correlation with geomagnetic activity,” Soln.–Zemnaya Fiz., No. 21, 107–109 (2012).

    Google Scholar 

  28. V. A. Semenov, E. A. Shelekhova, I. I. Mokhov, et al., “Influence of the Atlantic multidecadal oscillation on settling anomalous climate regimes in Northern Eurasia based on model simulation,” Dokl. Earth Sci. 459 (2), 1619–1622 (2014).

    Article  Google Scholar 

  29. A. V. Chernokulsky, I. I. Mokhov, and N. G. Nikitina, “Winter cloudiness variability over Northern Eurasia related to the Siberian high during 1966–2010,” Environ. Res. Lett. 8 (4), 045012 (2013).

    Article  Google Scholar 

  30. A. D. Erlykin and A. W. Wolfendale, “Cosmic ray effects on cloud cover and their relevance to climate change,” J. Atmos. Sol.-Terr. Phys. 73 (13), 1681–1686 (2011).

    Article  Google Scholar 

  31. A. M. Makarieva, V. G. Gorshkov, D. Sheil, et al., “Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content,” J. Hydrometeorol. 15, 411–426 (2014).

    Article  Google Scholar 

  32. A. M. Strunin, “Cloud water content effects on computing spectral characteristics of temperature fields and turbulent heat fluxes in the cumulus cloud zones as derived from airborne observations,” Russ. Meteorol. Hydrol. 38 (7), 472–479 (2013).

    Article  Google Scholar 

  33. M. A. Strunin, “Measurements of turbulence in cloudy atmosphere onboard an aircraft–laboratory,” Mir Izmer., No. 9, 9–19 (2011).

    Google Scholar 

  34. M. A. Strunin, Turbulence in Cloudy Atmosphere (in Clouds and Near-Cloud Space). Empirical Model of Turbulence in Cloudy Atmosphere (DPS, Moscow, 2013) [in Russian].

    Google Scholar 

  35. W. Frey, S. Borrmann, D. Kunkel, et al., “In situ measurements of tropical cloud properties in the West African Monsoon: Upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus,” Atmos. Chem. Phys. 11, 5569–5590 (2011).

    Article  Google Scholar 

  36. W. Frey, S. Borrmann, F. Fierli, et al., “Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations,” Atmos. Chem. Phys. 14, 13223–13240 (2014).

    Article  Google Scholar 

  37. N. A. Kalinin and A. A. Smirnova, “Determination of liquid water content and reserve of cumulonimbus cloudiness from meteorological radar information,” Russ. Meteorol. Hydrol. 36 (2), 91–101 (2011).

    Article  Google Scholar 

  38. Kh. M. Zhakamikhov, “Numerical simulation of the scattering indicatrix, linear polarization rate, and depolarization factor in the developing convective cloud for millimeter and centimeter wavelengths,” Russ. Meteorol. Hydrol. 39 (10), 670–676 (2014).

    Article  Google Scholar 

  39. T. W. Krauss, A. A. Sin’kevich, N. E. Veremei, et al., “Complex study of characteristics of a Cb cloud developing over the Arabian Peninsula under high dew point deficit in the atmosphere. Part 1. Field observations and numerical modeling,” Russ. Meteorol. Hydrol. 36 (2), 102–111 (2011).

    Article  Google Scholar 

  40. T. W. Krauss, A. A. Sin’kevich, and N. E. Veremei, “Complex study of characteristics of a Cb cloud developing over the Arabian peninsula under conditions of high dew point deficit in the atmosphere. Part 2. Analysis of the meteosat data,” Russ. Meteorol. Hydrol. 36 (3), 167–174 (2011).

    Article  Google Scholar 

  41. Yu. A. Dovgalyuk and A. A. Ignat’ev, “Some specific features of the statistics of water content of shallow convective clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 566, 128–138 (2012).

    Google Scholar 

  42. B. Ya. Shmerlin and M. V. Kalashnik, “Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures,” Phys.-Usp. 56 (5), 473–485 (2013).

    Article  Google Scholar 

  43. B. A. Ashabokov, A. V. Shapovalov, D. D. Kuliev, et al., “Numerical simulation of thermodynamic, microstructural, and electric characteristics of convective clouds at the growth and mature stages,” Radiophys. Quantum Electron. 56 (11–12), 811–817 (2014).

    Article  Google Scholar 

  44. B. A. Ashabokov, V. A. Shapovalov, A. G. Ezaova, and M. A. Shapovalov, “Study of the ice-phase formation in strong convective clouds using a three-dimensional numerical model,” Estestv. Tekh. Nauki, No. 5, 78–83 (2014).

    Google Scholar 

  45. A. V. Shapovalov, V. A. Shapovalov, A. G. Ezaova, and K. A. Prodan, “Modeling of particle spectra in convective clouds wit a mixed phase composition and their radiative prooperties,” Izv. Kabard.–Balkar. Nauchnogo Tsentra RAN, No. 5, 63–72 (2013).

    Google Scholar 

  46. B. A. Ashabokov, V. A. Shapovalov, A. G. Ezaova, and M. A. Shapovalov, “Study of the ice-phase formation in strong convective clouds using a three-dimensional numerical model,” Estestv. Tekh. Nauki, No. 5, 78–83 (2014).

    Google Scholar 

  47. M. A. Simakhina, I. N. Larchenko, and A. A. Krupkin, “Formation of convection of moist air of atmospheric surface layer in a two-dimensional model,” Vestn. Stavrop. Gos. Univ., No. 75, 63–68 (2011).

    Google Scholar 

  48. Jambajamts Lkhamjavyn, Tsoozol Manaljavyn, and V. K. Arguchintsev, “Study of the convection using the Kine-Fritsh numerical model,” Izv. Irkutsk. Gos. Univ., Ser. Nauk Zemle 5 (1), 186–194 (2012).

    Google Scholar 

  49. S. N. Shabaganova, R. R. Karimov, V. I. Kozlov, and V. A. Mullayarov, “Characteristics of storm cells from observations in Yakutia,” Russ. Meteorol. Hydrol. 37 (11–12), 746–751 (2012).

    Article  Google Scholar 

  50. M. V. Zharashuev, “Statistical analysis of hail activity in Stavropol krai and Crimea,” Russ. Meteorol. Hydrol. 37 (7), 455–460 (2012).

    Article  Google Scholar 

  51. S. M. Abdullaev, A. A. Zhelnin, and O. Yu. Lenskaya, “The structure of mesoscale convective systems in central Russia,” Russ. Meteorol. Hydrol. 37 (1), 12–20 (2012).

    Article  Google Scholar 

  52. N. A. Kalinin, A. L. Vetrov, E. M. Sviyazov, and E. V. Popova, “Studying intensive convection in Perm krai using the WRF model,” Russ. Meteorol. Hydrol. 38 (9), 598–604 (2013).

    Article  Google Scholar 

  53. I. M. Gubenko and K. G. Rubinshtein, “An example of the comparison of middle troposphere instability indices in the prognostic model with the thunderstorm activity data,” Russ. Meteorol. Hydrol. 39 (5), 308–318 (2014).

    Article  Google Scholar 

  54. N. P. Shakina and E. N. Skriptunova, “Diagnosis and forecasting of the probability spectra of precipitation rate ranges,” Russ. Meteorol. Hydrol. 36 (8), 499–510 (2011).

    Article  Google Scholar 

  55. N. E. Veremei, Yu. A. Dovgalyuk, S. V. Efimov, et al., “Studying the showers and thunderstorms on the territory of Russia using the numerical model of convective cloud and the reanalysis data,” Russ. Meteorol. Hydrol. 38 (1), 20–27 (2013).

    Article  Google Scholar 

  56. M. V. Kurgansky, A. V. Chernokul’sky, and I. I. Mokhov, “The tornado over Khanty-Mansiysk: An exception or a symptom?,” Russ. Meteorol. Hydrol. 38 (8), 539–546 (2013).

    Article  Google Scholar 

  57. V. I. Khvorostyanov and J. A. Curry, Thermodynamics, Kinetics, and Microphysics of Clouds (Cambridge University Press, New York, 2014).

    Book  Google Scholar 

  58. V. A. Arkhipov, A. P. Berezikov, V. F. Trofimov, and A. S. Usanina, “Experimental study of loss of drop shape stability in a swirling flow,” Atmos. Oceanic Opt. 26 (5), 391–395 (2013).

    Article  Google Scholar 

  59. A. V. Burnashov and A. V. Konoshonkin, “Matrix of light scattering on a truncated plate-like droxtal preferably oriented in a horizontal plane,” Atmos. Oceanic Opt. 26 (3), 194–200 (2013).

    Article  Google Scholar 

  60. M. D. Geniya, A. D. Kuznetsova, and I. N. Mel’nikova, “Taking into account the errors and regulyarization of results of solution of the inverse problem of cloud optics in shortwave spectral band,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (4), 175–187 (2013).

    Google Scholar 

  61. N. A. Kalinin and B. L. Smorodin, “Unusual phenomenon of freezing rain in Perm krai,” Russ. Meteorol. Hydrol. 37 (8), 521–528 (2012).

    Article  Google Scholar 

  62. D. N. Troshkin, M. V. Kabanov, V. E. Pavlov, and A. N. Romanov, “Function of Distribution of Clouds’ Optical Thickness over the West Siberian Plain,” Dokl. Earth Sci. 436 (1), 113–116 (2011).

    Article  Google Scholar 

  63. A. V. Shavlov, V. A. Dzhumandzhi, and S. N. Romanyuk, “Spatially ordered structurs of water drops in atmospheric clouds,” Kriosfera Zemli 25 (4), 52–54 (2011).

    Google Scholar 

  64. A. V. Shavlov, I. V. Sokolov, S. N. Romanyuk, and V. A. Dzhumandzhi, “Indicators of spatial ordering of water drops in atmospheric fog,” Kriosfera Zemli 28 (1), 39–46 (2014).

    Google Scholar 

  65. Yu. S. Balin, B. V. Kaul, G. P. Kokhanenko, and I. E. Penner, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Express 19 (7), 6209–6214 (2011).

    Article  Google Scholar 

  66. C. Gatebe, A. Kuznetsov, and I. Melnikova, “Cloud optical parameters from airborne observation of diffuse solar radiation accomplished in USA and USSR in different geographical regions,” Int. J. Remote Sens. 35 (15), 5812–5829 (2014).

    Google Scholar 

  67. A. P. Grinin, G. Yu. Gor, and F. M. Kuni, “On the theory of aerosol particle growth: Non-steady transport problems,” Atmos. Res. 101 (3), 503–509 (2011).

    Article  Google Scholar 

  68. S. M. Prigarin, K. B. Bazarov, and U. G. Oppel, “Looking for a glory in A-water clouds,” Atmos. Oceanic Opt. 25 (4), 256–162 (2012).

    Article  Google Scholar 

  69. N. E. Veremei, Yu. A. Dovgalyuk, E. V. Dorofeev, et al., “Numerical modeling of soot aerosol influence on the convective cloud evolution under strong atmospheric pollution by aerosols,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 572, 30–43 (2014).

    Google Scholar 

  70. V. V. Smirnov, “Interrelation between variations of condensation nuclei concentration and cloud spectrum,” Russ. Meteorol. Hydrol. 36 (3), 155–166 (2011).

    Article  Google Scholar 

  71. A. A. Sin’kevich, T. W. Krauss, S. D. Pavar, et al., “Investigation of the effects of high atmospheric aerosol pollution on the development of the high-depth cumulonimbus cloud,” Russ. Meteorol. Hydrol. 39 (9), 577–589 (2014).

    Article  Google Scholar 

  72. J. A. Curry and V. I. Khvorostyanov, “Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models,” Atmos. Chem. Phys. 12, 1151–1172 (2012).

    Article  Google Scholar 

  73. V. I. Khvorostyanov and J. A. Curry, “Parameterization of Homogeneous Ice Nucleation for Cloud and Climate Models Based on Classical Nucleation Theory,” Atmos. Chem. Phys. 12, 9275–9302 (2012).

    Article  Google Scholar 

  74. R. Weigel, S. Borrmann, J. Kazil, et al., “In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism,” Atmos. Chem. Phys. 11, 9983–10010 (2011).

    Article  Google Scholar 

  75. V. N. Golubev, “Initiation and growth of ice cristals in the atmosfere,” Led Sneg, No. 1, 53–60 (2013).

    Google Scholar 

  76. A. N. Gruzdev, A. A. Isakov, and L. M. Shukurova, “Analysis of relationship between condensation activity of surface aerosol and its chemical composition and relative air humidity according to measurements at the Zvenigorod Scientific Station,” Atmos. Oceanic Opt. 27 (2), 169–175 (2014).

    Article  Google Scholar 

  77. A. A. Isakov, P. P. Anikin, A. S. Elokhov, and G. A. Kurbatov, “On characteristics of smokes of forest and peat fires in Central Russia in summer of 2010,” Opt. Atmos. Okeana 24 (6), 478–482 (2011).

    Google Scholar 

  78. A. A. Isakov, A. V. Tikhonov, and E. V. Romashova, “Statistical characteristics of spectral relationships of the parameter of condensation activity of surface aerosol,” Vestn. Tambov. Univ., Ser. Estestv. Tekh. Nauki 18 (4), 1383–1385 (2013).

    Google Scholar 

  79. E. F. Mikhailov, V. V. Merkulov, S. S. Vlasenko, et al., “Filter-based differential hygroscopicity analyzer of aerosol particles,” Izv., Atmos. Ocean. Phys. 47 (6), 747–759 (2011).

    Article  Google Scholar 

  80. A. A. Sin’kevich, S. D. Pavar, A. B. Kurov, et al., “Laboratornye issledovaniya vliyaniya chastits peska i gliny na protsessy kristallizatsii kapel’ vody,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 570, 197–210 (2014).

    Google Scholar 

  81. I. P. Parshutkina, E. V. Sosnikova, N. P. Grishina, et al., “Atmospheric aerosol characterization in 2010 anomalous summer season in the Moscow region,” Russ. Meteorol. Hydrol. 36 (6), 355–361 (2011).

    Article  Google Scholar 

  82. H. Keskinen, A. Virtanen, J. Joutsensaari, et al., “Evolution of particle composition in CLOUD nucleation experiments,” Atmos. Chem. Phys. 13, 5587–5600 (2013).

    Article  Google Scholar 

  83. V. G. Astafurov, T. V. Evsyutkin, K. V. Kur’yanovich, and A. V. Skorokhodov, “Statistical model of the image textures for different types of cloudiness by MODIS data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (4), 188–197 (2014).

    Google Scholar 

  84. V. G. Astafurov and A. V. Skorokhodov, “Segmentation of satellite images of cloudiness by texture criteria using neural network technologies,” Issled. Zemli Kosmosa, No. 6, 10–20 (2011).

    Google Scholar 

  85. V. G. Astafurov and A. V. Skorokhodov, “Classification of clouds by satellite images and using neural network technologies,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 8 (1), 65–72 (2011).

    Google Scholar 

  86. S. V. Afonin, “On the relation between radiation temperature of clouds in MODIS IR channels and cloud characteristics,” Atmos. Oceanic Opt. 25 (2), 154–156 (2011).

    Article  Google Scholar 

  87. A. A. Vetrov and A. E. Kuznetsov, “Automatic segmentation of cloud objekt on images of the Earth’s surface with high spatial resolution,” Issled. Zemli Kosmosa, No. 2, 27–34 (2014).

    Google Scholar 

  88. E. V. Volkova, “Using the integrated threshold technique for climatic study of parameters of cloud cover, precipitation, and hazardous weather phenomena according to SEVIRI/Meteosat-9 data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 200–206 (2012).

    Google Scholar 

  89. E. V. Volkova, “Estimates of parameters of cloud cover, precipitation, and hazardous weather phenomena according to data of AVHRR radiometry with a NOAA series satellite on a round-the-clock basis and automatically,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (3), 66–74 (2013).

    Google Scholar 

  90. E. V. Volkova, “Determinatio of precipitation amounts accroding to data of SEVIRI/Meteosat-9, -10, and AVHRR/NOAA for the European part of Russia,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 163–177 (2014).

    Google Scholar 

  91. T. W. Krauss, A. A. Sin’kevich, and A. S. Ghulam, “High-intensity precipitation measurement using remote methods,” Russ. Meteorol. Hydrol. 37 (7), 438–447 (2012).

    Article  Google Scholar 

  92. A. F. Nerushev and D. E. Chechin, “Determination of atmospheric precipitation characteristics on the basis of optical satellite measurements,” Issled. Zemli Kosmosa, No. 5, 29–38 (2014).

    Google Scholar 

  93. D. V. Solomatov, S. V. Afonin, and V. V. Belov, “Construction of cloud mask and removal of semitransparent clouds on ETM+/Landsat-7 satellite images,” Opt. Atmos. Okeana 26 (9), 798–803 (2013).

    Google Scholar 

  94. E. V. Sukhonin, “On the problem of joint active–passive radiosounding of precipitation at radio occultation routs,” Radiotekh. Elektron. (Moscow) 58 (2), 143–146 (2013).

    Google Scholar 

  95. N. I. Tolmacheva and L. N. Ermakova, “Study of cloudiness parameters and phenomens accroding to satellite and radar sensing data,” Geograf. Vestn., No. 3, 59–68 (2011).

    Google Scholar 

  96. B. A. Fomin and V. A. Falaleeva, “The vertical structure of aerosols and clouds derived from satellites equipped with high-resolution polarization sensors,” Int. J. Remote Sens. 35 (15), 5800–5811 (2014).

    Google Scholar 

  97. Yu. B. Pavlyukov, N. I. Serebryanik, S. G. Belikov, et al., Temporal Methodical Guides on the Use of DMRS in Sinoptic Practice (Tsentr. Aerolog. Obs., 2014) [In Russian].

    Google Scholar 

  98. E. V. Dorofeev, M. V. L’vova, I. B. Popov, and I. A. Tarabukin, “Using criteria for the recognition of thunder cumulonimbus clouds in algorithms of secondary processing of radar data obtained wiith new-generation meteorological radars,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 572, 140–152 (2014).

    Google Scholar 

  99. A. A. Pomortseva, “Spatial structure of radar reflectivity of cumulonimbus clouds the URAL,” Geogr. Vestn., No. 4, 41–45 (2012).

    Google Scholar 

  100. E. N. Kadygrov, A. G. Gorelik, and T. A. Tochilkina, “Study of liquid water in clouds with the Microradkom radiometric system,” Atmos. Oceanic Opt. 27 (6), 596–604 (2014).

    Article  Google Scholar 

  101. E. N. Kadygrov, A. G. Gorelik, E. A. Miller, et al., “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmos. Okeana 26 (6), 459–465 (2013).

    Google Scholar 

  102. E. N. Kadygrov and I. N. Kuznetsova, Methodical Recommendations for the Use of Data of Remote Measurements of Temperature in the Atmospheric Boundary Layer by Microwave Profilemeters: Teory and Practice (Fizmatkniga, Dolgoprudny, 2015).

    Google Scholar 

  103. I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana 25 (10), 877–883 (2012).

    Google Scholar 

  104. I. N. Ezau, T. Wolf, E. A. Miller, et al., “The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway),” Russ. Meteorol. Hydrol. 38 (10), 715–724 (2013).

    Article  Google Scholar 

  105. A. A. Azbukin, V. V. Kal’chikhin, A. A. Kobzev, et al., “Optoelectronic unit for measuring the precipitation parameter,” Prib. Tekh. Eksp., No. 4, 140–141 (2013).

    Google Scholar 

  106. A. A. Azbukin, V. V. Kal’chikhin, A. A. Kobzev, et al., “Determination of calibration parameters of an optoelectronic precipitation gage,” Atmos. Oceanic Opt. 27 (5), 432–437 (2014).

    Article  Google Scholar 

  107. A. V. Burnashov and A. V. Konoshonkin, “Scattering of the light on bullet and droxtal ice crystals of cirrus clouds preferably oriented in a horizontal plane with zenith flutter,” Opt. Atmos. Okeana 27 (9), 807–811 (2014).

    Google Scholar 

  108. N. A. Vostretsov and A. F. Zhukov, “Distribution probability of fluctuation intensity of divergent laser beam in the ground atmosphere at snowfalls (0.63 mm),” Opt. Atmos. Okeana 24 (8), 706–710 (2011).

    Google Scholar 

  109. E. G. Kablukova, B. A. Kargin, A. A. Lisenko, et al., “Numerical statistical simulation of terahertz radiation propagation in cloudiness,” Opt. Atmos. Okeana 27 (11), 939–948 (2014).

    Google Scholar 

  110. V. V. Kal’chikhin, A. A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “On the choice of the measuring area for dual-channel optical rain gauge,” Opt. Atmos. Okeana 26 (2), 155–159 (2013).

    Google Scholar 

  111. V. V. Kal’chikhin, A. A. Kobzev, V. A. Korol’kov, and A. A. Tikhomirov, “Optoelectronic dual-channel precipitation gauge,” Opt. Atmos. Okeana 24 (11), 990–996 (2011).

    Google Scholar 

  112. A. V. Konoshonkin and A. G. Borovoi, “Specular scattering of light on cloud ice crystals and wavy water surface,” Atmos. Oceanic Opt. 26 (5), 438–443 (2013).

    Article  Google Scholar 

  113. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).

    Google Scholar 

  114. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Oceanic Opt. 28 (1), 74–81 (2015).

    Article  Google Scholar 

  115. A. V. Kryuchkov and A. I. Grishin, “Height gauge for the lower boundary of cloudiness,” Prib. Tekh. Eksp., No. 6, 143–144 (2011).

    Google Scholar 

  116. A. V. Kryuchkov and A. I. Grishin, “Eye-safe laser height gauge for the lower boundary of cloudiness,” Prib. Tekh. Eksp., No. 4, 142–143 (2013).

    Google Scholar 

  117. T. Sakai, D. N. Whiteman, F. Russo, et al., “Liquid water cloud measurements using the Raman lidar technique: Current understanding and future research needs,” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).

    Article  Google Scholar 

  118. P. N. Svirkunov and S. V. Kozlov, “Absorption of infrasonic waves in a cloudy medium,” Izv., Atmos. Ocean. Phys. 48 (6), 625–630 (2012).

    Article  Google Scholar 

  119. V. Sh. Shagapov and V. V. Sarapulova, “Features of sound refraction in the atmosphere in fog,” Izv., Atmos. Ocean. Phys. 50 (6), 602–609 (2014).

    Article  Google Scholar 

  120. Yu. S. Zagainova and Yu. S. Karavaev, “Assessing the cloudiness state with an 8-point scale by the method of histograms based on images in the visible range obtained from full-sky camera,” Soln.-Zemnaya Fiz., No. 23, 120–128 (2013).

    Google Scholar 

  121. S. V. Zuev, A. V. Gochakov, N. P. Krasnenko, and A. B. Kolker, “Application of RGB-and wavelet methods for instrumental determination of total cloudiness,” Opt. Atmos. Okeana 27 (9), 846–848 (2014).

    Google Scholar 

  122. S. V. Zuev and V. A. Levikin, “Definition of total cloudiness using the intencity blue in the sky image,” Opt. Atmos. Okeana 26 (6), 510–512 (2013).

    Google Scholar 

  123. V. P. Galileiskii, A. I. Grishin, and A. M. Morozov, “Passive monostatic method of estimation of the height and velocity of clouds,” Atmos. Oceanic Opt. 26 (6), 545–549 (2013).

    Article  Google Scholar 

  124. V. V. Sterlyadkin, T. N. Guseinov, and K. V. Kulikovskii, “Recording of photo tracks of anomalously high light modulation in rains,” Opt. Atmos. Okeana 25 (8), 708–713 (2012).

    Google Scholar 

  125. D. N. Zhivoglotov, “Estimation of liquid water content effects on the air temperature measurements in the clouds based on the wind tunnel,” Russ. Meteorol. Hydrol. 38 (8), 531–538 (2013).

    Article  Google Scholar 

  126. Y. Borisov, V. Petrov, M. Strunin, et al., “New Russian aircraft–laboratory Yak-42D Atmosphere for environmental research and cloud modification,” in Abstracts of the 16th International Conference on Clouds and Precipitation, 2012, p. 184.

    Google Scholar 

  127. A. M. Strunin and D. N. Zhivoglotov, “A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data,” Atmos. Res. 138, 98–111 (2014).

    Article  Google Scholar 

  128. B. A. Ashabokov, L. M. Fedchenko, G. V. Kupovykh, et al., “Model of convectivve cloud taking into account the effect of physical processes onits characteristics,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 6, 58–62 (2012).

    Google Scholar 

  129. B. A. Ashabokov, L. M. Fedchenko, A. V. Shapovalov, and V. A. Shapovalov, “3D numerical model of convectivve cloud with electrical processes: Some results of calculations of parametrov thunder/hail clouds,” Izv. Kabard.–Balkar. Nauchnogo Tsentra RAN, No. 6, 9–15 (2014).

    Google Scholar 

  130. B. A. Ashabokov, L. M. Fedchenko, A. V. Shapovalov, et al., “Numerical experiments on the study of the formation of microstructure characteristics of thunder/ hail clouds,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 3, 40–44 (2014).

    Google Scholar 

  131. K. D. Vasilevskii and V. P. Sadokov, “One-dimensional model of convective precipitation,” Tr. Gidrometeorol. Tsentra Russ. Fed., No. 348, 173–183 (2012).

    Google Scholar 

  132. B. L. Smorodin, N. A. Kalinin, and D. V. Davydov, “Simulation of the variations of the temperature of droplets in freezing precipitation,” Russ. Meteorol. Hydrol. 39 (9), 590–595 (2014).

    Article  Google Scholar 

  133. A. V. Eliseev, D. Coumou, A. V. Chernokulsky, et al., “Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity,” Geosci. Model Dev. 6, 1745–1765 (2013).

    Article  Google Scholar 

  134. J. H. Jiang, H. Su, C. Zhai, et al., “Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations,” J. Geophys. Res.: Atmos. 117 (D14), D14105 (2012). doi 10.1029/2011JD017237

    Article  Google Scholar 

  135. V. A. Ogorodnikov and O. V. Sergeeva, “Approximate numerical modelling of inhomogeneous stochastic fields of daily sums of liquid precipitation,” Russ. J. Numer. Anal. Math. Modell. 29 (6), 375–382 (2014).

    Article  Google Scholar 

  136. H. Su, J. H. Jiang, C. Zhai, et al., “Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data,” J. Geophys. Res.: Atmos. 118 (7), 2762–2780 (2013).

    Google Scholar 

  137. B. A. Abshaev, M. Ch. Zalikhanov, V. O. Tapaskhanov, et al., “On the state of investigations on physics of hail clouds and active influences on them,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 5, 43–45 (2012).

    Google Scholar 

  138. A. A. Danilova and B. M. Khuchunaev, “Regression analysis of atmospheric parameters leading to the formation of different types of hail embrios,” Izv. Kabard.–Balkar. Nauchnogo Tsentra RAN, No. 6, 107–115 (2011).

    Google Scholar 

  139. B. A. Kamalov, “On mechanism of hail cloud modification by seeding,” Russ. Meteorol. Hydrol. 36 (9), 608–612 (2011).

    Article  Google Scholar 

  140. A. M. Malkarova, “Estimation of physical efficiency of hail protection accounting for changes in hail climatology,” Russ. Meteorol. Hydrol. 36 (6), 392–398 (2011).

    Article  Google Scholar 

  141. B. P. Koloskov, V. P. Korneev, and G. G. Shchukin, Methods and Tools for the Modification of Clouds, Precipitation, and Fogs (RGGMU, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  142. I. M. Mamuchiev, “Evaluations for the development of a method for scattering of warm fogs by artificial water drops,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 566, 282–288 (2012).

    Google Scholar 

  143. A. P. Doronin, A. V. Makarov, R. V. Sheremet’ev, and R. Kh. Kalov, “Development of recommendations for optimized use of methods and tools for the modification of stratus-like cloudiness,” Izv. Kabard.–Balkar. Nauchnogo Tsentra RAN, No. 5, 57–65 (2011).

    Google Scholar 

  144. T. W. Krauss, A. A. Sin’kevich, R. Burger, et al., “Investigation of the impact of dynamic factors on Cb cloud development in Saudi Arabia,” Russ. Meteorol. Hydrol. 36 (10), 643–652 (2011).

    Article  Google Scholar 

  145. T. W. Krauss, A. A. Sin’kevich, and A. S. Ghulam, “Radar investigations of cloud merger,” Russ. Meteorol. Hydrol. 37 (9), 604–614 (2012).

    Article  Google Scholar 

  146. A. A. Sin’kevich, T. W. Krauss, A. S. Ghulam, and A. B. Kurov, “Investigation of high-depth cumulonimbus clouds characteristics after seeding to increase precipitation,” Russ. Meteorol. Hydrol. 38 (9), 587–597 (2013).

    Article  Google Scholar 

  147. B. P. Koloskov, V. P. Korneev, G. P. Beryulev, et al., “Some results of activities on the improvement of weather conditions over metropolises,” Russ. Meteorol. Hydrol. 36 (2), 117–123 (2011).

    Article  Google Scholar 

  148. A. A. Sin’kevich and T. W. Krauss, “Efficiency of the impact of crystallizing reagents on convective clouds in order to increase the amount of precipitation,” in Radar Meteorology and Active Impacts, Ed. by A. A. Sin’kevich, E. A. Dovgalyuk, and E. L. Makhotkina (Rosgidromet, St. Petersburg, 2012), pp. 30–49 [in Russian].

    Google Scholar 

  149. M. K. Zhekamukhov and A. M. Abshaev, “Dispersion of crystallizing reagents by detonation method. Part I: Detonation product expansion and kinetics of criticalsize embryo droplet formation,” Russ. Meteorol. Hydrol. 37 (7), 448–454 (2012).

    Article  Google Scholar 

  150. M. K. Zhekamukhov and A. M. Abshaev, “Dispersion of crystallizing reagents by detonation method. Part II: Computation of condensation growth of embryo droplets and their further enlargement using the simplified Brownian coagulation,” Russ. Meteorol. Hydrol. 37 (8), 529–536 (2012).

    Article  Google Scholar 

  151. M. K. Zhekamukhov and A. M. Abshaev, “Dispersion of crystallizing reagents by detonation method. Part III: Complex scheme of Brownian coagulation and formation of ice-forming particle spectrum,” Russ. Meteorol. Hydrol. 37 (9), 615–623 (2012).

    Article  Google Scholar 

  152. M. V. Belyaeva, A. S. Drofa, and V. N. Ivanov, “Efficiency of stimulating precipitation from convective clouds using salt powders,” Izv., Atmos. Ocean. Phys. 49 (2), 154–161 (2013).

    Article  Google Scholar 

  153. A. S. Drofa, V. G. Eran’kov, V. N. Ivanov, et al., “Experimental investigations of the effect of cloudmedium modification by salt powders,” Izv., Atmos. Ocean. Phys. 49 (3), 298–306 (2013).

    Article  Google Scholar 

  154. L. A. Dinevich, L. Kh. Ingel’, and A. Khain, “Evaluating the transport of ice-forming particles from ground-based generators,” Sovrem. Naukoemkie Tekhnol., No. 2, 14–25 (2013).

    Google Scholar 

  155. M. R. Vatiashvili, “Influence of phase transitions of water on cloud and cloud system parameters developing in natural conditions and affected by particles of ice-forming doobrazuyushchikh reagentov, in Radar Meteorology and Active Impacts, Ed. by A. A. Sin’kevich, E. A. Dovgalyuk, and E. L. Makhotkinoi (Rosgidromet, St. Petersburg, 2012), pp. 162–177 [in Russian].

    Google Scholar 

  156. A. A. Vardanyan and G. A. Galechan, “Negative ion fluxes for precipitation stimulation,” Al’tern. Energ. Ekol., No. 8, 89–90 (2012).

    Google Scholar 

  157. A. Kh. Adzhiev and Kh. Kh. Mashukov, “Experiments on the accelerated formation and separation of voluminous electric discharges in stratus clouds,” Izv. Kabard.–Balkar. Nauchnogo Tsentra RAN, No. 6, 64–68 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernokulsky.

Additional information

Original Russian Text © N.A. Bezrukova, A.V. Chernokulsky, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 5, pp. 577–589.

Russian National Report / Meteorology and Atmospheric Sciences. 2011–2014. / Eds: Mokhov I.I., Krivolutsky A.A. National Geophysical Committee RAS. Moscow: MAX Press, 2015. 270 p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrukova, N.A., Chernokulsky, A.V. Russian studies on clouds and precipitation in 2011–2014. Izv. Atmos. Ocean. Phys. 52, 512–523 (2016). https://doi.org/10.1134/S0001433816050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816050029

Keywords

Navigation