Skip to main content
Log in

Russian Studies on Clouds and Precipitation in 2015–2018

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Results of Russian studies on cloud physics, precipitation, and weather modification in 2015–2018 are presented based on a survey prepared for the Russian National Report on Meteorology and Atmospheric Sciences to the 27th General Assembly of the International Union of Geodesy and Geophysics (ed. by I.I. Mokhov and A.A. Krivolutsky), Moscow: MAKS Press, 2019, 332 pp. doi:10.29003/m662.978-5-317-06182-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Bezrukova and A. V. Chernokulsky, “Clouds and precipitation,” in Russian National Report: Meteorology and Atmospheric Sciences: 2015–2018, Ed. by I. I. Mokhov and A. A. Krivolutsky (MAKS Press, Moscow, 2019), pp. 99–151. https://doi.org/10.29003/m662.978-5-317-06182-1

    Book  Google Scholar 

  2. N. A. Bezrukova and A. V. Chernokulsky, “Russian studies on clouds and precipitation in 2011–2014,” Izv., Atmos. Oceanic Phys. 52, 512–523 (2016).

    Google Scholar 

  3. Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, “To the 100th anniversary of the publication of the first cloud atlas in Russia,” Meteorol. Gidrol., No. 8, 118–119 (2017).

  4. V. S. Komarov, G. G. Matvienko, S. N. Il’in, and N. Ya. Lomakina, “Estimate of local features of long-term variations in cloud cover over the territory of Siberia using results of its climatic zoning according to total and low-level cloud regimes,” Atmos. Oceanic Opt. 28, 265–272 (2015).

    Google Scholar 

  5. V. S. Komarov, G. G. Matvienko, N. Ya. Lomakina, et al., “Statistical structure and long-term change of the lower stratiform clouds over Siberia as a base for meteorological support for solution of applied problems. Part 1. Statistics of low-level stratiform clouds,” Opt. Atmos. Okeana 28 (7), 622–629 (2015).

    Google Scholar 

  6. V. S. Komarov, G. G. Matvienko, N. Ya. Lomakina, et al., “Statistical structure and long-term change of the lower stratiform clouds over Siberia as a base for meteorological support for solution of applied problems. Part 2. Long-term changes in the low-level stratiform clouds,” Opt. Atmos. Okeana 28 (7), 630–637 (2015).

    Google Scholar 

  7. V. S. Komarov, G. G. Matvienko, S. N. Ilyin, and N. Ya. Lomakina, “The effect of the modern changes in the low-level stratiform clouds on the temperature regime of surface atmospheric layer in Siberia,” Atmos. Oceanic Opt. 29, 79–83 (2016).

    Google Scholar 

  8. A. V. Chernokulsky, “Day and night cloudiness using satellite data from different sources,” Izv. Akad. Nauk, Ser. Geogr., No. 6, 48–60 (2015).

  9. J. Calbó, J. Badosa, J. González, et al., “Climatology and changes in cloud cover in the area of the Black, Caspian, and Aral Seas (1991–2010): a comparison of surface observations with satellite and reanalysis products,” Int. J. Climatol. 36, 1428–1443 (2016).

    Google Scholar 

  10. A. A. Kubryakov, M. V. Shokurov, and S. V. Stanichnyi “Cloudiness over the Black Sea region in 1985–2009 from satellite data,” Russ. Meteorol. Hydrol. 41, 691–697 (2016).

    Google Scholar 

  11. I. V. Chernykh and O. A. Aldukhov, “Long-term estimates of parameters of the vertical distribution of cloud layers from atmospheric radiosounding data,” Russ. Meteorol. Hydrol. 41, 229–239 (2016).

    Google Scholar 

  12. A. V. Chernokulsky, I. Esau, O. N. Bulygina, et al., “Climatology and interannual variability of cloudiness in the Atlantic Arctic from surface observations since the late nineteenth century,” J. Clim. 30 (6), 2103–2120 (2017).

    Google Scholar 

  13. E. V. Gorbarenko, O. A. Shilovtseva, and N. A. Bunina, “Climatic characteristics of clouds in Moscow,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 585, 126–141 (2017).

    Google Scholar 

  14. A. V. Chernokulsky and A. V. Eliseev, “Climatology of the cloud overlap parameter,” Sovr. Probl. Dist. Zond. Zemli Kosmosa 14 (1), 216–225 (2017).

    Google Scholar 

  15. M. Aleksandrova, S. K. Gulev, and K. Belyaev, “Probability distribution for the visually observed fractional cloud cover over the ocean,” J. Clim. 31, 3207–3232 (2018).

    Google Scholar 

  16. I. V. Chernykh and O. A. Aldukhov, “Estimating the number of cloud layers through radiosonde data from Russian aerological stations for 1964–2014,” Russ. Meteorol. Hydrol. 43, 152–160 (2018).

    Google Scholar 

  17. N. P. Shakina and E. N. Skriptunova, “Mean characteristics of limited visibility conditions at the aerodromes in the Asian part of Russia and in the neighboring countries,” Gidrometeorol. Issled. Prognozy, No. 4 (370), 18–35 (2018).

    Google Scholar 

  18. V. N. Malinin and S. M. Gordeeva, “Variability of evaporation and precipitation over the ocean from satellite data,” Izv., Atmos. Oceanic Phys. 53, 934–944 (2017).

    Google Scholar 

  19. A. K. Gorshenin, “Pattern-based analysis of probabilistic statistical characteristics of precipitation,” Inform. Primen. 11 (4), 38–46 (2017).

    Google Scholar 

  20. V. Yu. Korolev and A. K. Gorshenin, “The probability distribution of extreme precipitation,” Dokl. Earth Sci. 477 (2), 1461–1466 (2017).

    Google Scholar 

  21. A. K. Gorshenin and V. Yu. Korolev, “Scale mixtures of Frechet distributions as asymptotic approximations of extreme precipitation,” J. Math. Sci. 234 (6), 886–903 (2018).

    Google Scholar 

  22. A. V. Chernokulsky, F. A. Kozlov, O. G. Zolina, et al., “Climatology of precipitation of different genesis in North Eurasia,” Russ. Meteorol. Hydrol. 43, 425–435 (2018).

    Google Scholar 

  23. T. A. Matveeva, D. Yu. Gushchina, and O. G. Zolina, “Large-scale indicators of extreme precipitation in the coastal natural-economic zones of the European part of Russia,” Russ. Meteorol. Hydrol. 40, 722–730 (2015).

    Google Scholar 

  24. O. G. Zolina and O. N. Bulygina, “Current climatic variability of extreme precipitation in Russia,” Fundam. Prikl. Klimatol. 1, 84–103 (2016).

    Google Scholar 

  25. P. A. Shabanov, T. A. Matveeva, and M. Yu. Markina, “Interannual changes in very strong precipitation events in the European part of Russia,” Fundam. Prikl. Klimatol. 4, 106–123 (2017).

    Google Scholar 

  26. E. Vyshkvarkova, E. N. Voskresenskaya, and J. Martin-Vide, “Spatial distribution of the daily precipitation concentration index in Southern Russia,” Atmos. Res. 203, 36–43 (2018).

    Google Scholar 

  27. L. Yu, Q. Yang, T. Vihma, et al., “Features of extreme precipitation at Progress Station, Antarctica,” J. Clim. 31, 9087–9105 (2018).

    Google Scholar 

  28. O. N. Bulygina, N. M. Arzhanova, and P. Ya. Groisman, “Icing conditions over Northern Eurasia in changing climate,” Environ. Res. Lett. 10 (2), 025 003 (2015).

    Google Scholar 

  29. P. Ya. Groisman, O. N. Bulygina, X. Yin, et al., “Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia,” Environ. Res. Lett. 11 (4), 045 007 (2016).

    Google Scholar 

  30. E. K. Semenov, N. N. Sokolikhina, I. I. Leonov, and E. V. Sokolikhina, “Atmospheric circulation over central European Russia during freezing rain in December 2010,” Meteorol. Gidrol., No. 5, 91–101 (2017).

  31. T. E. Danova and E. A. Grigor’eva, “Precipitation dynamics at the south of the Far East as revealed by component analysis,” Geogr. Prir. Resur., No. 3, 146–154 (2015).

  32. T. V. Pavlova and V. M. Kattsov, “Expected changes of precipitation and evaporation in the Arctic in the 21st century: results of computations with a set of global climatic models (CMIP5), Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 579, 22–36 (2015).

    Google Scholar 

  33. B. A. Ashabokov, A. A. Tashilova, L. A. Kesheva, and Z. A. Taubekova, “Trends in precipitation parameters in the climate zones of southern Russia (1961–2011), Russ. Meteorol. Hydrol. 42, 150–158 (2017).

    Google Scholar 

  34. M. A. Aleshina, P. A. Toropov, and V. A. Semenov, “Temperature and humidity regime changes on the Black Sea Coast in 1982–2014,” Russ. Meteorol. Hydrol. 43, 235–244 (2018).

    Google Scholar 

  35. V. P. Evstigneev, D. V. Mishin, and L. P. Ostroumova, “Calculation of precipitation layer as a water balance component of the Sea of Azov,” Russ. Meteorol. Hydrol. 43, 520–529 (2018).

    Google Scholar 

  36. A. V. Ignatov, O. P. Osipova, and A. S. Balybina, “Spatial structure of the relationships of annual precipitation amounts in Siberia and Kazakhstan,” Geogr. Nat. Resour., 39, 148–152 (2018).

    Google Scholar 

  37. N. A. Speranskaya and T. V. Fuksova, “Long-term changes in the main components of Lake Hanka water regime,” Russ. Meteorol. Hydrol. 43, 530–538 (2018).

    Google Scholar 

  38. M. G. Sukhova and O. V. Zhuravleva, “Air temperature and precipitation changes in the intermontane depressions of Southeast and Central Altai,” Izv. Akad. Nauk, Ser. Geogr., No. 6, 93–101 (2018).

  39. O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, et al., “The main precipitation regimens in the south of East Siberia and in Mongolia in July,” Opt. Atmos. Okeana 31 (6), 443–450 (2018).

    Google Scholar 

  40. I. I. Mokhov, “Russian climate studies in 2015–2019,” Izv., Atmos. Oceanic Phys. 56 (2020).

  41. E. P. Meredith, V. A. Semenov, D. Maraun, et al., “Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme,” Nat. Geosci. 8, 615–619 (2015).

    Google Scholar 

  42. N. I. Komas’ko, N. P. Shakina, E. N. Skriptunova, and A. R. Ivanova, “Vector frontogenesis as a factor of precipitation generation,” Russ. Meteorol. Hydrol. 40, 565–575 (2015).

    Google Scholar 

  43. K. Yu. Sukovatov and N. N. Bezuglova, “Coherent oscillations of cold-season precipitation on the territory of the Ishim Plain and atmospheric circulation indices,” Russ. Meteorol. Hydrol. 40, 10–15 (2015).

    Google Scholar 

  44. E. A. Cherenkova, M. Yu. Bardin, and A. N. Zolotokrylin, “The statistics of precipitation and droughts during opposite phases of the quasi-biennial oscillation of atmospheric processes and its relation to the yield in the European part of Russia,” Russ. Meteorol. Hydrol. 40, 160–169 (2015).

    Google Scholar 

  45. C. Volosciuk, D. Maraun, V. A. Semenov, et al., “Rising Mediterranean Sea surface temperatures amplify extreme summer precipitation in Central Europe,” Sci. Rep. 6, 32 450 (2016).

    Google Scholar 

  46. J. Piao, W. Chen, K. Wei, et al., “An abrupt rainfall decrease over the Asian Inland Plateau region around 1999 and the possible underlying mechanism,” Adv. Atmos. Sci. 34 (4), 456–468 (2017).

    Google Scholar 

  47. D. Yu. Vasil’ev, O. K. Babkov, E. S. Kochetkova, and V. A. Semenov, “Wavelet and cross-wavelet analysis of total precipitation and surface temperature in the European part of Russia,” Izv. Akad. Nauk, Ser. Geogr., No. 6, 63–77 (2017).

  48. I. I. Mokhov and A. V. Timazhev, “Assessing the probability of El Niño-related weather and climate anomalies in Russian regions, Russ. Meteorol. Hydrol. 42, 635–643 (2017).

    Google Scholar 

  49. E. A. Cherenkova, “Seasonal precipitation at the East European plain during periods of anomalously high and low surface temperature of the northern Atlantic Ocean, Izv. Akad. Nauk, Ser. Geogr., No. 5, 72–81 (2017).

  50. E. A. Cherenkova and V. A. Semenov, “A link between winter precipitation in Europe and the Arctic Sea ice, sea surface temperature, and atmospheric circulation,” Russ. Meteorol. Hydrol. 42, 238–247 (2017).

    Google Scholar 

  51. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia,” Atmosphere 9 (2), 50 (2018).

    Google Scholar 

  52. O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, and V. I. Mordvinov, “Dynamic processes in the atmosphere that determine anomalous precipitation in East Siberia and Mongolia in the summer,” Fundam. Prikl. Klimatol. 1, 10–27 (2018).

    Google Scholar 

  53. L. Kh. Ingel, “On the theory of convective jets and thermals in the atmosphere,” Izv., Atmos. Oceanic Phys. 52, 602–605 (2016).

    Google Scholar 

  54. S. A. Sukhov, Z. M. Atabiev, and R. G. Zakinyan, “Assesment of the parameters of a rising thermal,” Estestv. Tekh. Nauki, No. 6 (108), 71–73 (2017).

    Google Scholar 

  55. L. Kh. Ingel, “Nonlinear dynamics of turbulent thermals in shear flow,” J. Appl. Mech. Tech. Phys. 59, 206–211 (2018).

    Google Scholar 

  56. S. P. Kshevetskii and S. N. Kulichkov, “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution,” Izv., Atmos. Oceanic Phys. 51, 42–48 (2015).

    Google Scholar 

  57. L. V. Kashleva, Yu. P. Mikhailovskii, and V. Yu. Mikhailovskii, “Charging mechanisms of hydrometeors in thunderstorm clouds,” Uch. Zap. Ros. Gos. Gidrometeorol. Univ., No. 45, 118–131 (2016).

  58. K. N. Pustovalov and P. M. Nagorskii, “The main types of electric field variation during the passage of cumulonimbus clouds of different genesis,” Atmos. Oceanic Opt. 29 (8), 647–653 (2016).

    Google Scholar 

  59. A. A. Sin’kevich, Yu. P. Mikhailovskii, Yu. A. Dovgalyuk, et al., “Investigations of the development of thunderstorm with hail. Part 1. Cloud development and formation of electric discharges,” Russ. Meteorol. Hydrol. 41, 610–619 (2016).

    Google Scholar 

  60. E. A. Mareev and S. O. Dementyeva, “The role of turbulence in thunderstorm, snowstorm, and dust storm electrification,” J. Geophys. Res.: Atmos. 122, 6976–6988 (2017).

    Google Scholar 

  61. A. M. Abshaev, M. T. Abshaev, A. Kh. Adzhiev, et al., “Analysis of compartment development and interaction in thunderstorm-hail clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 586, 93–117 (2017).

    Google Scholar 

  62. Yu. A. Dovgalyuk, N. E. Veremei, M. A. Zatevakhin, et al., “Numerical simulation of cloud merging using a three-dimensional non-stationary model of cloud convection,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 584, 7–35 (2017).

    Google Scholar 

  63. V. S. Inyukhin, V. S. Makitov, and S. A. Kushchev, “Radar studies of formation and development of hail cores in severe convective clouds,” Russ. Meteorol. Hydrol. 42, 471–476 (2017).

    Google Scholar 

  64. V. A. Kolbin, A. D. Kuznetsov, O. S. Seroukhova, et al. “Selected results of the study of the process of convective compartment merging over the Leningrad oblast,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 587, 47–55 (2017).

    Google Scholar 

  65. Yu. P. Mikhailovskii, A. A. Sin’kevich, S. D. Pawar, et al., “Investigations of the development of thunderstorm with hail. Part 2. Analysis of methods for the forecast and diagnosis of the electrical properties of clouds,” Russ. Meteorol. Hydrol. 42, 377–387 (2017).

    Google Scholar 

  66. V. B. Popov and A. A. Sin’kevich, “Studying the merging of convective clouds in Northwestern Russia,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 585, 39–55 (2017).

    Google Scholar 

  67. A. A. Sin’kevich, Yu. A. Dovgalyuk, N. E. Veremei, et al., “Investigations of the development of thunderstorm with hail. Part 3. Numerical simulation of cloud evolution,” Russ. Meteorol. Hydrol. 42, 494–502 (2017).

    Google Scholar 

  68. K. N. Pustovalov and P. M. Nagorskiy, “Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds,” J. Atmos. Sol.-Terr. Phys. 172, 33–39 (2018).

    Google Scholar 

  69. S. O. Dementyeva and E. A. Mareev, “On the contribution of turbulence to the electrification of thunderclouds,” Izv., Atmos. Ocean. Phys. 54 (1), 25–31 (2018).

    Google Scholar 

  70. A. R. Ivanova, “Icing of aircraft engines in ice crystals: ways to solve the problem,” Gidrometeorol. Issled. Prognozy, No. 2 (368), 95–109 (2018).

    Google Scholar 

  71. V. V. Klimenko and E. A. Mareev, “Anomalous decimeter radio noise from the region of the atmospheric front. I. Characteristics of the detected radio noise and meteorological parameters of the frontal cloudiness,” Izv., Atmos. Oceanic Phys. 54, 147–153 (2018).

    Google Scholar 

  72. V. V. Klimenko and E. A. Mareev, “Anomalous decimeter radio noise from the region of the atmospheric front. 2. On the nonthermal mechanism of UHF noise,” Izv., Atmos. Oceanic Phys. 54, 380–385 (2018).

    Google Scholar 

  73. K. N. Pustovalov and P. M. Nagorskiy, “Comparative analysis of electric state of surface air layer during the passage of ciumulonimbus clouds in warm and cold seasons,” Atmos. Oceanic Opt. 31, 685–689 (2018).

    Google Scholar 

  74. A. A. Sin’kevich, V. B. Popov, I. A. Tarabukin, et al., “Changes in Cu characteristics and precipitation during Cu merging,” Russ. Meteorol. Hydrol. 43, 506–515 (2018).

    Google Scholar 

  75. A. A. Sin’kevich, Yu. A. Dovgalyuk, N. E. Veremei, and Yu. P. Mikhailovskii, Cloud Merging (Gl. Geofiz. Obs., St. Petersburg, 2018) [in Russian].

    Google Scholar 

  76. A. M. Strunin and M. A. Strunin, “Interrelation between the dynamic structure and water content of convective clouds based on aircraft observations,” Russ. Meteorol. Hydrol. 43, 227–234 (2018).

    Google Scholar 

  77. E. A. Mareev, V. N. Stasenko, M. V. Shatalina, et al., “Russian studies of atmospheric electricity in 2015–2018,” Izv., Atmos. Oceanic Phys. 55, 562–572 (2019).

    Google Scholar 

  78. W. Frey, R. Schofield, P. Hoor, et al., “The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS),” Atmos. Chem. Phys. 15 (11), 6467–6486 (2015).

    Google Scholar 

  79. A. Kh. Adzhiev, A. A. Adzhieva, Z. M. Knyazeva, and V. N. Stasenko, “Spatial features of thunderstorm activity in the North Caucasus from meteorological and instrumental data,” Russ. Meteorol. Hydrol. 40, 253–258 (2015).

    Google Scholar 

  80. V. P. Gorbatenko, S. Yu. Krechetova, M. Yu. Belikova, and O. E. Nechepurenko, “The comparison of atmospheric instability indices retrieved from the data of radio sounding and MODIS spectroradiometer on thunderstorm days over West Siberia,” Russ. Meteorol. Hydrol. 40, 289–295 (2015).

    Google Scholar 

  81. I. V. Grishchenko and T. N. Ryumina, “Thunderstorms in the north or Europe–the likely weather and climate threats and risks,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 576, 92–101 (2015).

    Google Scholar 

  82. Yu. A. Dovgalyuk, M. L. Toropova, and N. E. Veremei, “Studies of thunderstorm clouds and thunderstorm activity characteristics based on ground observations and numerical modeling (at the example of the St. Petersburg station),” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 576, 50–61 (2015).

    Google Scholar 

  83. M. A. Novitskii, B. Ya. Shmerlin, S. A. Petrichenko, et al., “Using the indices of convective instability and meteorological parameters for analyzing the tornado-risk conditions in Obninsk on May 23, 2013,” Russ. Meteorol. Hydrol. 40, 79–84 (2015).

    Google Scholar 

  84. Yu. Ya. Chernogubova, “The emergence of dangerous convective weather phenomena at the territory surveyed by the Central Chernozem State Meteorological Service Division and forecasting these phenomena,” Tr. Gidrometeorol. Tsentra Rossii, No. 357, 125–145 (2015).

    Google Scholar 

  85. A. V. Chernokulsky, M. V. Kurgansky, D. I. Zakharchenko, and I. I. Mokhov, “Genesis environments and characteristics of the severe tornado in the South Urals on August 29, 2014,” Russ. Meteorol. Hydrol. 40, 794–799 (2015).

    Google Scholar 

  86. I. N. Esau and A. V. Chernokulsky, “Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground-based observations,” Izv., Atmos. Oceanic Phys. 51, 1007–1020 (2015).

    Google Scholar 

  87. A. Kh. Adzhiev, V. N. Stasenko, A. V. Shapovalov, and V. A. Shapovalov, “Atmospheric electric field strength and thunderstorms in the North Caucasus,” Russ. Meteorol. Hydrol. 41, 186–192 (2016).

    Google Scholar 

  88. V. P. Gorbatenko, O. E. Nechepurenko, S. Yu. Krechetova, and M. Yu. Belikova, “The verification of atmospheric instability parameters recovered by spectroradiometer MODIS/Terra with data from upper-air soundings,” Opt. Atmos. Okeana 29 (7), 603–607 (2016).

    Google Scholar 

  89. O. V. Kalmykova and V. M. Shershakov, “General characteristics of waterspouts in the Russian part of the Black Sea in 2014–2015,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 581, 165–175 (2016).

    Google Scholar 

  90. O. V. Kalmykova and V. M. Shershakov, “A technology of waterspout monitoring over the Russian part of the Black Sea,” Russ. Meteorol. Hydrol. 41, 728–734 (2016).

    Google Scholar 

  91. M. A. Novitskii, Yu. B. Pavlyukov, B. Ya. Shmerlin, et al. “The tornado in Bashkortostan: the potential of analyzing and forecasting tornado-risk conditions,” Russ. Meteorol. Hydrol. 41, 683–690 (2016).

    Google Scholar 

  92. A. A. Pomortseva and N. A. Kalinin, “An analytical review of the current state of research on squalls: conditions of occurrence, methods of diagnosis and prognosis,” Geogr. Vestnik, No 3 (38), 90–104 (2016).

    Google Scholar 

  93. O. V. Kalmykova and V. M. Shershakov, “Waterspout risk index for the Black Sea area near the coast of Russia,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 584, 142–163 (2017).

    Google Scholar 

  94. B. E. Peskov, A. D. Golubev, A. A. Alekseeva, and T. G. Dmitrieva, “Analysis of the conditions of the emergence of a strong squall in the Kursk oblast on April 3, 2017,” Tr. Gidrometeorol. Tsentra Rossii, No. 364, 93–103 (2017).

    Google Scholar 

  95. L. D. Tarabukina, V. I. Kozlov, R. R. Karimov, and V. A. Mullayarov, “Spatial pattern of lightning strikes in North Asia,” Russ. Meteorol. Hydrol. 42, 88–94 (2017).

    Google Scholar 

  96. A. V. Chernokulsky, M. V. Kurgansky, and I. I. Mokhov, “Analysis of changes in tornadogenesis conditions over Northern Eurasia based on a simple index of atmospheric convective instability,” Dokl. Earth Sci. 477, 1504–1509 (2017).

    Google Scholar 

  97. D. A. Yarovaya and V. V. Efimov, “Cloud compartments according to satellite measurement data and convective energy balance upon cold air influx into the atmosphere above the Black Sea,” Issled. Zemli Kosmosa, No. 6, 54–64 (2017).

    Google Scholar 

  98. A. V. Chernokulsky and A. N. Shikhov, “1984 Ivanovo tornado outbreak: determination of actual tornado tracks with satellite data,” Atmos. Res. 207, 111–121 (2018).

    Google Scholar 

  99. A. N. Shikhov and A. V. Chernokulsky, “Satellite-derived climatology of unreported tornadoes in forested regions of Northeast Europe,” Remote Sens. Environment 204, 553–567 (2018).

    Google Scholar 

  100. N. A. Kalinin, A. V. Bykov, E. V. Pishchal’nikova, and A. N. Shikhov, “Analysis of the conditions of strong squall emergence in Perm krai according to observation data and the results of numerical modeling,” Gidrometeorol. Issled. Prognozy, No. 2 (368), 7–26 (2018).

    Google Scholar 

  101. I. V. Kuzhevskaya, K. N. Pustovalov, and A. A. Sharapova, “Characteristics of convective clusters inferred from ATOVS sensing instrument data,” Fundam. Prikl. Klimatol. 2, 69–85 (2018).

    Google Scholar 

  102. V. P. Gorbatenko, O. E. Nechepurenko, D. A. Konstantinova, and V. V. Sevast’yanov, “Atmosphere instability indices and their threshold values optimal for the prediction of thunderstorms over Siberia,” Gidrometeorol. Issled. Prognozy, No. 2 (368), 44–59 (2018).

    Google Scholar 

  103. M. A. Novitskii, B. Ya. Shmerlin, S. A. Petrichenko, et al., “Joint calculation of vertical velocity and convective indices in the WRF model for the analysis and forecasting of tornado-risk situations,” Russ. Meteorol. Hydrol. 43, 565–573 (2018).

    Google Scholar 

  104. S. O. Romanskii, E. M. Verbitskaya, S. V. Ageeva, and D. P. Istomin, “Tornado in the city of Blagoveshchensk on July 31, 2011,” Russ. Meteorol. Hydrol. 43, 574–580 (2018)

    Google Scholar 

  105. A. A. Sprygin and M. I. Prokharenya, “Diagnosis and prognosis of convective structures with dangerous phenomena based on the data of modeling and remote sensing over Belarus and central Russia,” Gidrometeorol. Issled. Prognozy, No. 3 (369), 6–22 (2018).

    Google Scholar 

  106. M. V. Kurgansky and V. N. Krupchatnikov. “Dynamic meteorology research in Russia, 2015–2018,” Izv., Atmos. Oceanic Phys. 55, 505–536 (2019).

    Google Scholar 

  107. A. V. Shavlov, I. V. Sokolov, V. L. Khazan, and V. A. Dzhumandzhi, “Spatial structure of water fog,” Dokl. Earth Sci. 461 (2), 422–426 (2015).

    Google Scholar 

  108. V. V. Sterlyadkin, “Spatial selection and grouping of rain drops by size in wind gusts,” Izv., Atmos. Oceanic Phys. 51, 615–623 (2015).

    Google Scholar 

  109. A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Express 23, 24 557–24 571 (2015).

    Google Scholar 

  110. A. Konoshonkin, Z. Wang, A. Borovoi, et al., “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express 24, A1257–A1268 (2016).

    Google Scholar 

  111. A. V. Konoshonkin, “Optical characteristics of irregular atmospheric ice columns,” Atmos. Oceanic Opt. 30, 508–516 (2017).

    Google Scholar 

  112. A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25, 22 341–22 346 (2017).

    Google Scholar 

  113. Z. Wang, A. Borovoi, A. Konoshonkin, et al., “Extinction matrix for cirrus clouds in the visible and infrared regions,” Opt. Lett. 43, 3578–3581 (2018).

    Google Scholar 

  114. G. E. Kolokutin and V. V. Volkov, “The microphysical nature of the glory from aircraft measurements,” Atmos. Oceanic Opt. 31, 157–162 (2018).

    Google Scholar 

  115. A. V. Shavlov and V. A. Dzhumandzhi, “Metastable states and coalescence of charged water drops inside clouds and fog,” J. Aerosol Sci. 91, 54–61 (2016).

    Google Scholar 

  116. A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “The charge on water drops upon evaporation and condensation,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 587, 56–78 (2017).

    Google Scholar 

  117. A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge separation at the evaporation (condensation) front of water and ice. Charging of spherical droplets,” Tech. Phys. 63, 482–490 (2018).

    Google Scholar 

  118. N. E. Veremei, Yu. A. Dovgalyuk, V. Gopalakrishnan, et al., “Studying the effects of severe aerosol pollution of the atmosphere on the dynamics of cumulonimbus cloud charge structure by numerical modeling,” Russ. Meteorol. Hydrol. 40, 777–786 (2015).

    Google Scholar 

  119. V. N. Golubev, “A role of aerosol particles in atmospheric ice nucleation,” Russ. Meteorol. Hydrol. 40, 787–793 (2015).

    Google Scholar 

  120. A. B. Kurov, N. E. Veremei, N. N. Volkov, et al., “The effect of soot particles on water droplet crystallization,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 579, 205–213 (2015).

    Google Scholar 

  121. A. A. Sin’kevich, S. D. Pawar, N. E. Veremei, et al., “Studies of changes in the electric structure of a thunderstorm cloud under the conditions of strong aerosol pollution of the atmosphere,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 579, 23–46 (2015).

    Google Scholar 

  122. A. A. Sin’kevich, S. D. Pawar, A. B. Kurov, et al., “On the effect of aerosols of natural origin on the temperature of water droplet crystallization,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 576, 42–49 (2015).

    Google Scholar 

  123. A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “The role of sulfate aerosol in the formation of cloudiness over the sea,” Izv., Atmos. Oceanic Phys. 52, 353–364 (2016).

    Google Scholar 

  124. Yu. A. Dovgalyuk, N. E. Veremei, M. L. Toropova, et al., “The effect of atmosphere pollution by aerosols from forest fires on the evolution of convective clouds and the related precipitation,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 585, 7–38 (2017).

    Google Scholar 

  125. M. L. Pöhlker, F. Ditas, J. Saturno, et al., “Long-term observations of cloud condensation nuclei over the Amazon rain forest - Part 2: variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols,” Atmos. Chem. Phys. 18, 10 289–10 331 (2018).

    Google Scholar 

  126. Yu. A. Dovgalyuk, N. E. Veremei, M. L. Toropova, et al., “The distinctive features of convective cloud and precipitation evolution under the conditions of strong aerosol pollution of the atmosphere due to forest fires,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 588, 7–27 (2018).

    Google Scholar 

  127. E. F. Mikhailov, G. N. Mironov, C. Pöhlker, et al., “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015).

    Google Scholar 

  128. T. I. Ryshkevich, G. N. Mironov, S. Yu. Mironova, et al., “Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011,” Izv., Atmos. Oceanic Phys. 51, 512–519 (2015).

    Google Scholar 

  129. M. L. Pöhlker, C. Pöhlker, F. Ditas, et al., “Long-term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction,” Atmos. Chem. Phys. 16, 15 709–15 740 (2016).

    Google Scholar 

  130. O. B. Popovicheva, N. M. Persiantseva, M. A. Timofeev, et al., “Small-scale study of Siberian biomass burning: II. Smoke hygroscopicity,” Aerosol Air Qual. Res. 16, 1558–1568 (2016).

    Google Scholar 

  131. S. S. Vlasenko, H. Su, U. Poschl, et al., “Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties,” Atmos. Meas. Tech. 10, 1269–1280 (2017).

    Google Scholar 

  132. V. S. Kozlov, R. F. Rakhimov, and V. P. Shmargunov, “Variations in condensation properties of mixed smoke from biomass burning at different smoke evolution stages,” Atmos. Oceanic Opt. 31, 9–18 (2018).

    Google Scholar 

  133. E. F. Mikhailov, O. A. Ivanova, S. S. Vlasenko, et al., “Cloud condensation nuclei activity of the Aitken mode particles near St. Petersburg, Russia,” Izv., Atmos. Oceanic Phys. 53, 326–333 (2017).

    Google Scholar 

  134. Yu. M. Timofeev and E. M. Shul’gina, “Russian investigations in the field of atmospheric radiation in 2015–2018,” Izv., Atmos. Oceanic Phys. 56, 1–15 (2020).

    Google Scholar 

  135. V. A. Vetrov, V. V. Kuzovkin, and D. A. Manzon, “Precipitation acidity and fallout of nitrogen and sulfur on the territory of the Russian Federation from the data of monitoring the chemical composition of snow cover,” Russ. Meteorol. Hydrol. 40, 667–674 (2015).

    Google Scholar 

  136. I. D. Eremina, A. E. Aloyan, V. O. Arutyunyan, et al., “Acidity and mineral composition of precipitation in Moscow: Influence of deicing salts,” Izv., Atmos. Oceanic Phys. 51, 624–632 (2015).

    Google Scholar 

  137. I. D. Eremina, A. E. Aloyan, V. O. Arutyunyan, et al., “Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis,” Izv., Atmos. Oceanic Phys. 53, 334–342 (2017).

    Google Scholar 

  138. Yu. E. Lavrukhin and M. I. Dinu, “Influence of radon on the acidification of atmospheric precipitation, Geochem. Int. 55, 125–130 (2017).

    Google Scholar 

  139. Yu. N. Chizhova, I. D. Eremina, N. A. Budantseva, et al., “Concentration of 18O in precipitation over Moscow in 2014,” Russ. Meteorol. Hydrol. 42, 54–63 (2017).

    Google Scholar 

  140. E. S. Semenets, “A method for the assessment of characteristic pollutant concentration in the precipitation (at the example of data from St. Petersburg and Voeikovo stations),” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 583, 197–208 (2016).

    Google Scholar 

  141. I. I. Kondrat’ev, D. E. Mukha, A. G. Boldeskul, et al. “Chemical composition of precipitation and snow cover in the Primorsky krai,” Russ. Meteorol. Hydrol. 42, 64–70 (2017).

    Google Scholar 

  142. D. V. Kalinskaya, A. V. Varenik, and A. S. Papkova, “Phosphorus and silicon as markers of dust aerosol transfer over the Black Sea region,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 15 (3), 217–225 (2018).

    Google Scholar 

  143. N. I. Yanchenko and E. I. Kotova, “Fluorine sources in precipitation in the city of Bratsk,” Meteorol. Gidrol., No. 5, 108–112 (2018).

  144. D. N. Zhivoglotov and M. A. Strunin, “Measurements of navigation parameters of the flight and the thermodynamic characteristics of the atmosphere by the new-generation instrumentation of the Yak-42D “Roshydromet” research aircraft,” in Proc II All-Russian “Ecology and Space” Sci. Conf. Dedicated to Acad. K.Ya. Kondrat’ev (Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, St-Petersburg, 2015), pp. 124–130 [in Russian].

  145. N. V. Bazanin, V. V. Volkov, A. V. Gan’shin, et al., “Characteristics of aerosol pollutant transfer near a megacity (Moscow) based on the results of aircraft studies,” in Problems of Cloud Physics. Atmospheric Aerosols and Active Forcings. Collected Works in the Memory of N.O. Plaude (TsAO, Moscow, 2015), pp. 89–117 [in Russian].

  146. A. S. Kuz’michev, T. I. Babukhina, A. V. Gan’shin, et al., “Remote and in situ measurements of aerosol concentration in the Arctic troposphere from the Yak-42D “Roshydromet” research aircraft,” Russ. Meteorol. Hydrol. 41, 365–372 (2016).

    Google Scholar 

  147. G. E. Kolokutin, B. A. Fomin, and V. V. Petrov, “Actinometric system aboard the Yak-42D “Roshydromet” research aircraft,” Russ. Meteorol. Hydrol. 43, 203–208 (2018).

    Google Scholar 

  148. C. Schiller et al., “Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review,” Atmos. Chem. Phys. 15 (14), 8521–8538 (2015).

    Google Scholar 

  149. A. Afchine, C. Rolf, A. Costa, et al., “Ice particle sampling from aircraft – Influence of the probing position on the ice water content,” Atmos. Meas. Tech. 11, 4015–4031 (2018).

    Google Scholar 

  150. Yu. P. Mikhailovskii, “On verification of numerical models of convective cloud based on air borne data on electrification,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 580, 125–138 (2016).

    Google Scholar 

  151. R. E. Torgunakov, Yu. P. Mikhailovskii, and A. A. Sin’kevich, “Aircraft studies of electric field intensity and aircraft charge in convective clouds at an early stage of development,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 587, 32–46 (2017).

    Google Scholar 

  152. O. V. Strashko, I. E. Kuznetsov, A. Yu. Kachalkin, et al., “Technologies of using unmanned aircraft systems to solve meteorological problems,” Aviakosm. Priborostr., No. 1, 42–51 (2018).

  153. Interim Guidelines for Using the Information from a DMRL-S Doppler Meteorological Radar in Synoptic Practice,2-nd Edition, Ed. by Yu. B. Pavlyukov, N. I. Serebryannik, S. G. Belikov. (Ross. Gidrometeorol. Tsentr, Moscow, 2017) [in Russian].

    Google Scholar 

  154. Yu. B. Pavlyukov, R. B. Zaripov, A. N. Luk’yanov, et al., “The impact of radar data assimilation on atmosphere state analysis in the Moscow region,” Russ. Meteorol. Hydrol. 42, 357–368 (2017).

    Google Scholar 

  155. R. B. Zaripov, Yu. B. Pavlyukov, A. A. Shumilin, and A. V. Travov, “The use of radar information in the assessment of high-resolution weather forecasts,” Gidrometeorol. Issled. Prognozy, No. 2 (368), 60–86 (2018).

    Google Scholar 

  156. A. A. Alekseeva and B. E. Peskov, “Estimation of the maximal speed of convective flow and rainfall precipitation and hail characteristics from radar information,” Tr. Gidrometeorol. Tsentra Rossii, No. 360, 135–148 (2016).

    Google Scholar 

  157. A. M. Abshaev, M. T. Abshaev, A. Kh. Gergokov, et al., “Meteorological radar calibration methods,” Metorol. Gidrol., No. 3, 114–121 (2017).

  158. A. A. Alekseeva, E. V. Vasil’ev, and V. M. Bukharov, “Forecasting strong squalls in European Russia and their identification by Doppler radars,” Tr. Gidrometeorol. Tsentra Rossii, No. 363, 47–64 (2017).

    Google Scholar 

  159. M. V. Zharashuev, V. S. Makitov, A. Kh. Kagermazov, and D. D. Kuliev, “Calibration method for storm warning network locators,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 586, 164–174 (2017).

    Google Scholar 

  160. L. V. Kashleva, D. Kh. Ngo, and Yu. P. Mikhailovskii, “On the radar parameter-based control of precipitation from convective clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 587, 105–115 (2017).

    Google Scholar 

  161. M. V. Zharashuev, A. Kh. Gergokov, A. Kh. Kagermazov, et al., “A method for increasing the efficiency of comparing radar and ground-based information,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 588, 139–149 (2018).

    Google Scholar 

  162. A. V. Kapustin, V. A. Kolbin, A. D. Kuznetsov, et al., “Estimation of the duration of precipitation by the radar characteristics of convective clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 589, 114–124 (2018).

    Google Scholar 

  163. A. V. Murav’ev, D. B. Kiktev, and A. V. Smirnov, “An operative technology for precipitation nowcasting based on radar data and the results of verification for the warm season of the year (May–September 2017),” Gidrometeorol. Issled. Prognozy, No. 1 (367), 6–38 (2018).

    Google Scholar 

  164. V. V. Kalchikhin, A. A. Kobzev, V. A. Korolkov, and A. A. Tikhomirov, “Determination of the microstructural characteristics of liquid atmospheric precipitation by an optical rain gage”, Atmos. Oceanic Opt. 29, 304–307 (2016).

    Google Scholar 

  165. V. V. Kalchikhin, A. A. Kobzev, V. A. Korolkov, and A. A. Tikhomirov, “Determination of precipitation type using the results of optical measurements of the precipitation microstructure characteristics,” Opt. Atmos. Okeana 29 (8), 654–657 (2016).

    Google Scholar 

  166. V. V. Kalchikhin, A. A. Kobzev, V. A. Korolkov, and A. A. Tikhomirov, “Determination of the rate of fall of rain drops in measurements of their parameters by an optical rain gauge,” Meas. Tech. 59, 1175–1180 (2017).

    Google Scholar 

  167. M. A. Krinitskiy and A. V. Sinitsyn, “Adaptive algorithm for cloud cover estimation from all-sky images over the sea,” Oceanology (Engl. Transl.) 56, 315–319 (2016).

  168. A. I. Chulichkov, M. S. Andreev, G. S. Golitsyn, et al., “On cloud bottom boundary determination by digital stereo photography from the Earth’s surface,” Atmos. Oceanic Opt. 30, 184–190 (2017).

    Google Scholar 

  169. M. A. Krinitskiy, “Application of machine learning methods to the solar disk state detection by all-sky images over the ocean,” Oceanology (Engl. Transl.) 57, 265–269 (2017).

  170. V. P. Galileiskii, A. I. Elizarov, D. V. Kokarev, et al., “On some results of observations of the sky at the TOMSKY panoramic optical station,” Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, No. 662, 112–116 (2018).

    Google Scholar 

  171. V. V. Kalchikhin, A. A. Kobzev, V. A. Korolkov, and A. A. Tikhomirov, “Results of optical precipitation gage field tests,” Atmos. Oceanic Opt. 31, 545–547 (2018).

    Google Scholar 

  172. M. A. Krinitskiy, M. P. Aleksandrova, S. K. Gulev, and A. V. Sinitsyn, Clouds above the Ocean: The Modern Research Methods (Torus-Press, Moscow, 2018) [in Russian].

    Google Scholar 

  173. A. V. Konoshonkin, A. G. Borovoi, and N. V. Kustova, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).

    Google Scholar 

  174. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, et al., “Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods,” J. Quant. Spectrosc. Radiat. Transfer 182, 12–23 (2016).

    Google Scholar 

  175. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, et al., “Light scattering by ice crystals of cirrus clouds: from exact numerical methods to physical-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 195, 132–140 (2017).

    Google Scholar 

  176. I. Veselovskii, P. Goloub, T. Podvin, et al., “Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: features attributed to ice-crystals corner reflection,” J. Quant. Spectrosc. Radiat. Transfer 202, 74–80 (2017).

    Google Scholar 

  177. Z. Wang, V. A. Shishko, A. V. Konoshonkin, et al., “The study of cirrus clouds with the polarization lidar in the South-East China (Hefei),” Atmos. Oceanic Opt. 30 (3), 234–235 (2017).

    Google Scholar 

  178. A. G. Borovoi, A. V. Konoshonkin, N. V. Kustova, and I. A. Veselovskii, “Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling,” J. Quant. Spectrosc. Radiat. Transfer 212, 88–96 (2018).

    Google Scholar 

  179. N. A. Vostretsov and A. F. Zhukov, “Adequacy of the approximation criterion for the probability density distribution of the fluctuation of radiation of a focused laser beam in a snowfall,” Opt. Atmos. Okeana 28 (1), 98–99 (2011).

    Google Scholar 

  180. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Oceanic Opt. 28, 441–447 (2015).

    Google Scholar 

  181. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Oceanic Opt. 28, 448–454 (2015).

    Google Scholar 

  182. N. A. Vostretsov and A. F. Zhukov, “The normalized temporal autocorrelation function of fluctuations of the scattered radiation of a focused laser beam (0.63 µm) in the surface atmosphere in rain, drizzle, fog, and haze,” Opt. Atmos. Okeana 29 (5), 377–379 (2016).

    Google Scholar 

  183. A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Oceanic Opt. 29, 252–262 (2016).

    Google Scholar 

  184. A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particles,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).

    Google Scholar 

  185. A. V. Demin and E. A. Seledkina, “Increasing the reliability of echo signal reception in cloud bottom boundary determination,” Navig. Gidrogr., No. 47, 85–92 (2017).

  186. K. M. Zhakamikhov and A. M. Abshaev, “Numerical simulation of scattered light polarization in a developing convective cloud for millimeter wavelengths,” Russ. Meteorol. Hydrol. 42, 369–376 (2017).

    Google Scholar 

  187. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi and J. Reichardt, “Retrieving the fraction of quasi-horizontally oriented ice crystals from a Raman lidar and a ceilometer,” Opt. Atmos. Okeana, 30 (7), 552–557 (2017).

    Google Scholar 

  188. I. D. Bryukhanov, S. V. Zuev, and I. V. Samokhvalov, “The results of experimental studies of microphysical properties of cirrus clouds and solar radiation fluxes near the Earth’s surface,” Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, No. 662, 107–111 (2018).

    Google Scholar 

  189. N. A. Vostretsov, “The probability density of fluctuations of focused laser beam scattered radiation in the surface air layer under rain, drizzle, and fog,” Opt. Atmos. Okeana 31, 24–27 (2018).

    Google Scholar 

  190. V. G. Astafurov and A. V. Skorokhodov, “Multi-layer cloud classification from MODIS data using neural network technology and fuzzy logic approach,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12 (6), 162–173 (2015).

    Google Scholar 

  191. E. V. Volkova and A. B. Uspenskii, “Evaluation of cloud and precipitation parameters from data of scanning radiometers of polar-orbiting and geostationary meteorological satellites,” Issled. Zemli Kosmosa, No. 5, 30 (2015).

    Google Scholar 

  192. E. V. Volkova, A. B. Uspenskii and A. V. Kukharskii, “A specialized software package for collection and validation of satellite estimates of cloudiness and precipitation parameters,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12 (3), 7–26 (2015).

    Google Scholar 

  193. V. V. Chukin, I. N. Mel’nikova, T. T. Nguen, et al., “Diagnostics of ice cores in clouds from the SEVIRI device data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12 (4), 133–142 (2015).

    Google Scholar 

  194. V. G. Astafurov, K. V. Kur’yanovich, and A. V. Skorokhodov, “Methods of automatic cloud classification in MODIS satellite images,” Issled. Zemli Kosmosa, No. 4, 35–45 (2016).

    Google Scholar 

  195. V. G. Astafurov and A. V. Skorokhodov, “Identification of atmospheric gravity waves in clouds over a water surface from MODIS imagery,” Atmos. Oceanic Opt. 30, 44–49 (2017).

    Google Scholar 

  196. E. V. Zabolotskikh and B. Chapron, “Neural network-based method for the estimation of the rain rate over oceans by measurements of the satellite radiometer AMSR2,” Izv., Atmos. Ocean Phys. 52, 82–88 (2016).

    Google Scholar 

  197. V. G. Astafurov, K. V. Kur’yanovich, and A. V. Skorokhodov, “A statistical model for describing the texture of cloud cover images from satellite data,” Russ. Meteorol. Hydrol. 42, 248–257 (2017).

    Google Scholar 

  198. V. G. Astafurov and A. V. Skorokhodov, “A statistical mode of the physical parameters of clouds based on MODIS thematic tools,” Issled. Zemli Kosmosa, No. 5, 66–81 (2017).

    Google Scholar 

  199. E. V. Volkova, “Detection and assessment of cloud cover and precipitation parameters using data from MSU-MR radiometer of the polar-orbiting Meteor-M No. 2 for the European territory of Russia,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (5), 300–320 (2015).

    Google Scholar 

  200. E. V. Zabolotskikh, “Contemporary methods for retrieving the integrated atmospheric water-vapor content and the total cloud liquid-water content,” Izv., Atmos. Ocean Phys. 53, 294–300 (2017).

    Google Scholar 

  201. A. A. Kostornaya, E. I. Saprykin, M. G. Zakhvatov, and Yu. V. Tokareva, “A method of cloud detection from satellite data,” Russ. Meteorol. Hydrol. 42, 753–758 (2017).

    Google Scholar 

  202. A. D. Kuznetsov, O. S. Seroukhova, and T. E. Simakina, “A procedure for mesoscale cloud identification in satellite images,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 585, 85–97 (2017).

    Google Scholar 

  203. V. G. Astafurov, A. V. Skorokhodov, O. P. Musienko, and K. V. Kur’yanovich, “Statistical models of image texture and physical parameters of cloudiness during snow cover periods on the Russian Federation territory from MODIS data,” Opt. Atmos. Okeana, 31 (7), 537–541 (2018).

    Google Scholar 

  204. E. V. Volkova, “The assessment of microphysical parameters of the cloud cover from satellite data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 15 (4), 265–282 (2018).

    Google Scholar 

  205. A. V. Skorokhodov and V. G. Astafurov, “A method for determining atmospheric front types based on the results of cloud classification according to MODIS satellite data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 15 (3), 209–216 (2018).

    Google Scholar 

  206. A. V. Skorokhodov, V. G. Astafurov, and T. V. Evsyutkin, “The use of statistical models of image texture and physical parameters of clouds for cloud classification in MODIS satellite images,” Issled. Zemli Kosmosa, No. 4, 43–58 (2018).

    Google Scholar 

  207. V. S. Kostsov, “Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data,” Izv., Atmos. Ocean Phys. 51, 156–166 (2015).

    Google Scholar 

  208. V. E. Kunitsyn, I. A. Nesterov and N. A. Tereshin, “Analysis of moisture content of the atmosphere based on GPS receiver data,” Zhurn. Radioelektron., No. 6, 6–18 (2015).

  209. T. T. Nguen and V. V. Chukin, “A model of electromagnetic wave dispersion on water droplets and fractal ice crystals,” Uch. Zap. Ross. Gos. Gidrometorol. Univ., No. 38, 93–101 (2015).

  210. V. P. Busygin, L. R. Dmitrieva-Arrago, L. D. Krasnokutskaya, and I. Yu. Kuz’mina, “The effect of cloudiness parameters on the characteristics of lightning optical signals registered by spacecraft,” Tr. Gidrometeorol. Tsentra Rossii, No. 359, 73–89 (2016).

    Google Scholar 

  211. Ya. A. Ilyushin and B. G. Kutuza, “Influence of a spatial structure of precipitates on polarization characteristics of the outgoing microwave radiation of the atmosphere,” Izv., Atmos. Ocean Phys. 52, 74–81 (2016).

    Google Scholar 

  212. I. N. Mel’nikova, A. D. Kuznetsov, O. S. Seroukhova, and T. E. Simakina, “Remote sensing of optical parameters of clouds in aircraft measurements of solar radiation in the visible and near infrared ranges,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 585, 98–109 (2017).

    Google Scholar 

  213. E. P. Meredith, D. Maraun, V. A. Semenov, and W. Park, “Evidence for added value of convection-permitting models for studying changes in extreme precipitation,” J. Geophys. Res.: Atmos. 120, 12 500–12 513 (2015).

    Google Scholar 

  214. C. Volosciuk, D. Maraun, V. A. Semenov, and W. Park, “Extreme precipitation in an atmosphere general circulation model: impact of horizontal and vertical model resolutions,” J. Clim. 28, 1184–1205 (2015).

    Google Scholar 

  215. E. M. Volodin “Clouds and condensation,” in Mathematical Modeling of the Earth System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016), pp. 58–91 [in Russian].

    Google Scholar 

  216. M. A. Maddakh, I. N. Rusin, and A. M. Akhund-Ali, “The effect of spatial resolution on the quality of strong precipitation reproduction in the WRF-ARW model at the example of southwestern Iran,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 588, 62–85 (2018).

    Google Scholar 

  217. Yu. A. Dovgalyuk, N. E. Veremei, S. A. Vladimirov, et al., “A concept for the development of a numerical non-stationary three-dimensional model of the evolution of a precipitation-forming convective cloud under the natural conditions and with active forcing,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova No. 582, 7–44 (2016).

    Google Scholar 

  218. Yu. A. Dovgalyuk, N. E. Veremei, S. A. Vladimirov, et al., “The perspectives of developing a full three-dimensional model of a convective cloud,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova No. 582, 202–213 (2016).

    Google Scholar 

  219. N. E. Veremei, Yu. A. Dovgalyuk, M. A. Zatevakhin, et al. “Description of a basic numerical non-stationary three-dimensional model of a convective cloud,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 582, 45–91 (2016).

    Google Scholar 

  220. Yu. P. Mikhailovskii, “On verification of numerical models of convective cloud based on air borne data on electrification,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 580, 125–137 (2016).

    Google Scholar 

  221. A. E. Aloyan, V. O. Arutyunyan, and A. N. Ermakov, “Mathematical modeling of convective cloudiness in polar regions,” Opt. Atmos. Okeana 30 (3), 222–226 (2017).

    Google Scholar 

  222. M. V. Shatalina, S. O. Dement’eva, and E. A. Mareev, “Monitoring and simulation of thunderstorm events in the Nizhny Novgorod region: The strong thunderstorm of June 1–2, 2015,” Meteorol. Gidrol., No. 11, 81–87 (2016).

  223. V. I. Bychkova, V. L. Perov, and K. G. Rubinshtein, “Numerical modeling of snow blizzard emergence and development with the WRF-ARW model,” Tr. Gidrometeorol. Tsentra Rossii, No. 353, 46–62 (2015).

    Google Scholar 

  224. I. M. Gubenko and K. G. Rubinshtein, “Analysis of the results of thunderstorm forecasting based on atmospheric instability indices using the WRF-ARW numerical model data,” Russ. Meteorol. Hydrol. 40, 16–24 (2015).

    Google Scholar 

  225. B. A. Ashabokov, A. Kh. Kagermazov, A. V. Shapovalov, and V. A. Shapovalov, “On an approach to setting the initial conditions in the modeling of convective clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 582, 159–173 (2016).

  226. N. A. Kalinin, A. L. Vetrov, E. V. Pishchal’nikova, et al., “Estimating the accuracy of the very heavy snowfall forecast in the Urals by the WRF model,” Russ. Meteorol. Hydrol. 41, 193–198 (2016).

    Google Scholar 

  227. E. V. Pishchal’nikova, N. A. Kalinin, A. L. Vetrov, et al., “WRF model-based forecasting of heavy and very heavy snowfalls in the Urals,” Tr. Gidrometeorol. Tsentra Rossii, No. 359, 58–72 (2016).

    Google Scholar 

  228. O. G. Aniskina, O. V. Volobueva, S. V. Mostamandi, et al., “The assessment of snowfall predictions based on the WRF model for the northwest of European Russia,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 586, 175–190 (2017).

    Google Scholar 

  229. A. V. Gavrikov, “Estimating the reproduction quality of precipitation over the North Atlantic and influence of the hydrostatic approximation in the WRF–ARW atmospheric model,” Oceanology (Engl. Transl.) 57, 232–238 (2017).

  230. I. M. Gubenko and K. G. Rubinshtein, “Thunderstorm activity forecasting based on the model of cumulonimbus cloud electrification,” Russ. Meteorol. Hydrol. 42, 77–87 (2017).

    Google Scholar 

  231. N. A. Kalinin, A. N. Shikhov, and A. V. Bykov, “Forecasting mesoscale convective systems in the Urals using the WRF model and remote sensing data,” Russ. Meteorol. Hydrol. 42, 9–18 (2017).

    Google Scholar 

  232. I. A. Kulikova, E. N. Kruglova, D. B. Kiktev, and V. G. Sal’nikov, “Practical predictability of the standardized precipitation index on monthly and seasonal timescales,” Russ. Meteorol. Hydrol. 42, 582–593 (2017).

    Google Scholar 

  233. M. A. Maddakh, I. N. Rusin, and A. M. Akhund-Ali, “Assessment of the physical parameterizations of the WRF model for the simulation of heavy precipitation in the southwest of Iran,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 586, 191–204 (2017).

    Google Scholar 

  234. V. I. Bychkova and K. G. Rubinshtein, “Parameterization of the processes of ground blizzard emergence and evolution,” Opt. Atmos. Okeana 31 (2), 143–150 (2018).

    Google Scholar 

  235. G. A. Zarochentsev, K. G. Rubinstein, V. I. Bychkova, et al. “Comparison of several numerical methods of fog forecasting,” Atmos. Oceanic Opt. 32, 193–201 (2019).

    Google Scholar 

  236. E. V. Pishchal’nikova, N. A. Kalinin, A. N. Shikhov, and A. V. Bykov, “Numerical prediction of strong precipitation during the cold season in Perm krai,” Gidrometeorol. Issled. Prognozy, No. 1 (367), 135–145 (2018).

    Google Scholar 

  237. K. G. Rubinshtein, R. Yu. Ignatov, Yu. I. Yusupov, and D. E. Titov, “Using the heat balance method to predict ice and hoarfrost deposition on the overhead power lines,” Energ. Edin. Seti, No. 2 (37), 42–50 (2018).

    Google Scholar 

  238. V. M. Tokarev, M. Ya. Zdereva, N. A. Khluchina, et al., “A technology of operative thunderstorm forecasting in Siberia and the results of testing this technology”, Gidrometeorol. Issled. Prognozy, No. 2 (368), 27–43 (2018).

    Google Scholar 

  239. V. A. Shapovalov, “Numerical modeling of electric processes in thunderstorm clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 588, 28–36 (2018).

    Google Scholar 

  240. A. P. Doronin, G. G. Shchukin, O. I. Didyk, V. M. Petrochenko, et al., “The possibilities of dispersing undulating and layered clouds in the north of European Russia for the needs of hydrometeorological support,” Navig. Gidrogr., No. 46, 60–69 (2015).

  241. B. A. Ashabokov, A. V. Shapovalov, Z. S. Gaeva, et al., “Numerical modeling of the parameters of hail clouds exposed to a crystallization-inducing reagent. The prospects of developing a complete three-dimensional model of convective clouds,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 582, 174–183 (2016).

    Google Scholar 

  242. L. K. Belova and A. S. Drofa, “A study of the effects of hygroscopic reagents on a convective cloud according to the results of numerical modeling,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 582, 184–201 (2016).

    Google Scholar 

  243. M. A. Vasil’eva, N. V. Zhokhova, A. A. Palei, et al., “Theoretical studies of the dynamics of aerosol particles under the influence of an inhomogeneous electric field and an assessment of its influence on fog dispersion processes,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 580, 82–98 (2016).

    Google Scholar 

  244. S. A. Vladimirov and R. S. Pastushkov, “A complex method of active impact on convective clouds for the regulation of precipitation. Three-dimensional numerical modeling,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 582, 116–127 (2016).

    Google Scholar 

  245. R. S. Pastushkov, “A model of active impact on convective clouds with ice-forming aerosols. Current state and perspectives of development,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 582, 128–158 (2016).

    Google Scholar 

  246. I. N. Rusin, Yu. A. Dovgalyuk, N. E. Veremei, and A. L. Kazanin, “Assessment of moisture resources accessible upon a hygroscopic reagent,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 580, 165–174 (2016).

    Google Scholar 

  247. V. S. Makitov, V. S. Inyukhin, H. M. Kalov, et al., “Radar research of hailstorm formation and development over the central part of Northern Caucasus (Russia). Organization and main results of the regional hail suppression projects,” Nat. Hazards 88, 253–272 (2017).

    Google Scholar 

  248. T. Y. Yanlong, H. Liang, A. Zaki, et al., “Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application,” ACS Nano 11 (12), 12 318–12 325 (2017).

    Google Scholar 

  249. B. A. Ashabokov, L. M. Fedchenko, A. V. Shapovalov, and V. A. Shapovalov, Physics of Clouds and Active Impacts on Them (Pechatnyi dvor, Nal’chik, 2017) [in Russian].

  250. L. K. Belova and A. S. Drofa, “Studies of precipitation processes in convective cloud based on the results of numerical modeling,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 585, 56–76 (2017)

    Google Scholar 

  251. V. V. Vorob’eva, E. M. Volodin, “Numerical modeling of climate modulation through changing the properties of the upper-tier clouds in the INM RAS climate model,” Tr. Gidrometeorol. Tsentra Rossii, No. 363, 5–18 (2017).

    Google Scholar 

  252. A. S. Drofa, V. N. Ivanov, B. G. Danelyan, et al., “Field tests of the effectiveness of cloud seeding with salt powder,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 585, 77–84 (2017).

    Google Scholar 

  253. V. P. Korneev, E. I. Potapov, and G. G. Shchukin, “Environmental aspects of cloud seeding,” Russ. Meteorol. Hydrol. 42, 477–483 (2017).

    Google Scholar 

  254. A. M. Strunin and M. A. Strunin, Assessment of convective cloud growth stage based on aircraft observation data for active forcing work, in Proc. All Russian Conf. Cloud Phys. Active Impacts on Hydrometeorol. Proc. (Aeterna, Ufa, 2017), vol. 1, pp. 197–205 [in Russian].

  255. L. K. Belova and A. S. Drofa, “Studies of the effect of hygroscopic and ice-forming reagents on a convective cloud,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 589, 74–97 (2018).

    Google Scholar 

  256. A. P. Doronin, N. A. Kozlova, V. M. Petrochenko, and G. G. Shchukin, “Method of modifying supercooled wave-like clouds with the aim of inducing artificial precipitation,” Uch. Zap. Ros. Gos. Gidrometeorol. Univ., No. 53, 9–17 (2018).

  257. A. A. Sin’kevich, B. Boe, Yu. P. Mikhailovskii, et al. Investigation of Cu cong seeding effect during rainfall augmentation in India. Russ. Meteorol. Hydrol. 43, 209–217 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to members of the Commission on Clouds and Precipitation, Russian National Geophysical Committee, who assisted in preparing the material.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Bezrukova or A. V. Chernokulsky.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrukova, N.A., Chernokulsky, A.V. Russian Studies on Clouds and Precipitation in 2015–2018. Izv. Atmos. Ocean. Phys. 56, 344–363 (2020). https://doi.org/10.1134/S0001433820040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820040027

Keywords:

Navigation