Skip to main content

A Climatological Overview of Arctic Clouds

  • Chapter
  • First Online:
Physics and Chemistry of the Arctic Atmosphere

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

The Arctic climate system is complex and clouds are one of its least understood components. Since cloud processes occur from micrometer to synoptic scales, their couplings with the other components of the Arctic climate system and their overall role in modulating the energy budget at different spatio-temporal scales is challenging to quantify. The in-situ measurements, as limited in space and time as they are, still reveal the complex nature of cloud microphysical and thermodynamical processes in the Arctic. However, the synoptic scale variability of cloud systems can only be obtained from the satellite observations. A considerable progress has been made in the last decade in understanding cloud processes in the Arctic due to the availability of valuable data from the multiple campaigns in the Central Arctic and due to the advances in the satellite remote sensing. This chapter provides an overview of this progress.

First an overview of the lessons learned from the recent in-situ measurement campaigns in the Arctic is provided. In particular, the importance of supercooled liquid water clouds, their role in the radiation budget and their interaction with the vertical thermodynamical structure is discussed. In the second part of the chapter, a climatological overview of cloud properties using the state-of-the-art satellite based cloud climate datasets is provided. The agreements and disagreements in these datasets are highlighted. The third and the fourth parts of the chapter highlight two most important processes that are currently being researched, namely cloud response to the rapidly changing sea-ice extent and the role of moisture transport in to the Arctic in governing cloud variability. Both of these processes have implications for the cloud feedback in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boeke, R. C., & Taylor, P. C. (2016). Evaluation of the Arctic surface radiation budget in CMIP5 models. Journal of Geophysical Research – Atmospheres, 121, 8525–8548. https://doi.org/10.1002/2016JD025099.

    Article  Google Scholar 

  • Boisvert, L. N., & Stroeve, J. C. (2015). The Arctic is becoming warmer and wetter as revealed by the atmospheric infrared sounder. Geophysical Research Letters, 42, 4439–4446. https://doi.org/10.1002/2015GL063775.

    Article  Google Scholar 

  • Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., & Brooks, B. J. (2017). The turbulent structure of the Arctic summer boundary layer during the Arctic summer Cloud-Ocean study. Journal of Geophysical Research, [Atmospheres], 122, 9685–9704. https://doi.org/10.1002/2017JD027234.

    Article  Google Scholar 

  • Cavalieri, D. J., & Parkinson, C. L. (2012). Arctic Sea ice variability and trends, 1979–2010. The Cryosphere, 6, 881–889. https://doi.org/10.5194/tc-6-881-2012.

    Article  Google Scholar 

  • Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated decline in the Arctic Sea ice cover. Geophysical Research Letters, 35, L01703. https://doi.org/10.1029/2007GL031972.

    Article  Google Scholar 

  • Cox, C. J., et al. (2015). Humidity trends imply increased sensitivity to clouds in a warming Arctic. Nature Communications, 6, 10117. https://doi.org/10.1038/ncomms10117.

    Article  Google Scholar 

  • Curry, J. A. (1986). Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. Journal of the Atmospheric Sciences, 43(1), 90–106.

    Article  Google Scholar 

  • Curry, J. A., & Herman, G. F. (1985). Infrared radiative properties of summertime Arctic stratus clouds. Journal of Climate and Applied Meteorology, 24, 525–538.

    Article  Google Scholar 

  • Curry, J. A., Rossow, W. B., Randall, D., & Schramm, J. L. (1996). Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9, 1731–1764.

    Article  Google Scholar 

  • Curry, J. A., Pinto, J. O., Benner, T., & Tschudi, M. (1997). Evolution of the cloudy boundary layer during the autumnal freezing of the Beaufort Sea. Journal of Geophysical Research, 102(D12), 13851–13860.

    Article  Google Scholar 

  • Devasthale, A., Sedlar, J., Koenigk, T., & Fetzer, E. J. (2013). The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012. Atmospheric Chemistry and Physics, 13, 7441–7450. https://doi.org/10.5194/acp-13-7441-2013.

    Article  Google Scholar 

  • Devasthale, A., Sedlar, J., Kahn, B. H., Tjernström, M., Fetzer, E. J., Tian, B., Teixeira, J., & Pagano, T. S. (2016). A decade of space borne observations of the Arctic atmosphere: Novel insights from NASA’s atmospheric infrared sounder (AIRS) instrument. Bulletin of the American Meteorological Society, 97, 2163–2176. https://doi.org/10.1175/BAMS-D-14-00202.1.

    Article  Google Scholar 

  • Döscher, R., Vihma, T., & Maksimovich, E. (2014). Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmospheric Chemistry and Physics, 14, 13571–13600. https://doi.org/10.5194/acp-14-13571-2014.

    Article  Google Scholar 

  • Eastman, R., & Warren, S. G. (2010). Interannual variations of Arctic cloud types in relation to sea ice. Journal of Climate, 23, 4216–4232.

    Article  Google Scholar 

  • Graversen, R. G., Mauritsen, T., Drijfhout, S., Tjernström, M., & Mårtensson, S. (2011). Warm winds from the Pacific caused extensive Arctic Sea ice melt in summer 2007. Climate Dynamics, 36, 2103–2112. https://doi.org/10.1007/s00382-010-0809-z.

    Article  Google Scholar 

  • Heidinger, A. K., Foster, M. J., Walther, A., & Zhao, X. (2014). The pathfinder atmospheres–extended AVHRR climate dataset. Bulletin of the American Meteorological Society, 95, 909–922. https://doi.org/10.1175/BAMS-D-12-00246.1.

    Article  Google Scholar 

  • Herman, G. F., & Curry, J. A. (1984). Observational and theoretical studies of solar radiation in Arctic stratus clouds. Journal of Climate and Applied Meteorology, 23, 5–24.

    Article  Google Scholar 

  • Herman, G., & Goody, R. (1976). Formation and persistence of summertime Arctic stratus clouds. Journal of the Atmospheric Sciences, 33, 1537–1553.

    Article  Google Scholar 

  • Intrieri, J. M., Shupe, M. D., Uttal, T., & McCarty, B. J. (2002a). An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. Journal of Geophysical Research, 107(C10), 1–15.

    Google Scholar 

  • Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., & Moritz, R. E. (2002b). An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107(C10), 1–14.

    Google Scholar 

  • Johansson, E., Devasthale, A., Tjernström, M., Ekman, A. M. L., & L’Ecuyer, T. (2017). Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 44, 2527–2536. https://doi.org/10.1002/2017GL072687.

    Article  Google Scholar 

  • Kahl, J. D. (1990). Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. International Journal of Climatology, 10, 537–548.

    Article  Google Scholar 

  • Kapsch, M.-L., Graversen, R. G., & Tjernström, M. (2013). Springtime atmospheric energy transport and the control of Arctic summer sea ice extent. Nature Climate Change, 3, 744–748. https://doi.org/10.1038/nclimate1884.

    Article  Google Scholar 

  • Karlsson, K.-G., & Devasthale, A. (2018). Inter-comparison and evaluation of the four longest satellite-derived cloud climate data records: CLARA-A2, ESA cloud CCI V3, ISCCP-HGM, and PATMOS-x. Remote Sensing, 10, 1567.

    Article  Google Scholar 

  • Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., & Hollmann, R. (2017). CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmospheric Chemistry and Physics, 17, 5809–5828. https://doi.org/10.5194/acp-17-5809-2017.

    Article  Google Scholar 

  • Kay, J. E., & Gettelman, A. (2009). Cloud influence on and response to seasonal Arctic Sea ice loss. Journal of Geophysical Research, 114, D18204. https://doi.org/10.1029/2009JD011773.

    Article  Google Scholar 

  • Kay, J. E., & L’Ecuyer, T. (2013). Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. Journal of Geophysical Research – Atmospheres, 118, 7219–7236. https://doi.org/10.1002/jgrd.50489.

    Article  Google Scholar 

  • Kay, J. E., L’Ecuyer, T., Chepfer, H., Loeb, N., Morrison, A., & Cesana, G. (2016). Recent advances in Arctic cloud and climate research. Current Climate Change Reports, 2, 159. https://doi.org/10.1007/s40641-016-0051-9.

    Article  Google Scholar 

  • Key, J., Wang, X., Liu, Y., Dworak, R., & Letterly, A. (2016). The AVHRR polar pathfinder climate data records. Remote Sensing, 8(3), 167. https://doi.org/10.3390/rs8030167.

    Article  Google Scholar 

  • Kwok, R., & Rothrock, D. A. (2009). Decline in Arctic Sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36, L15501. https://doi.org/10.1029/2009GL039035.

    Article  Google Scholar 

  • Liu, Y., Key, J. R., Liu, Z., Wang, X., & Vavrus, S. J. (2012). A cloudier Arctic expected with diminishing sea ice. Geophysical Research Letters, 39, L05705. https://doi.org/10.1029/2012GL051251.

    Article  Google Scholar 

  • Liu, Y., Key, J., Vavrus, S., & Woods, C. (2018). Time evolution of cloud response to moisture intrusions into the Arctic during winter. Journal of Climate, 31(22), 9389–9405. https://doi.org/10.1175/JCLI-D-17-0896.1.

    Article  Google Scholar 

  • Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N., & Wong, T. (2009). Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. Journal of Climate, 22, 748–766. https://doi.org/10.1175/2008JCLI2637.1.

    Article  Google Scholar 

  • Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. (2012). Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5, 11–17. https://doi.org/10.1038/NGE01332.

    Article  Google Scholar 

  • Paluch, I. R., & Lenschow, D. H. (1991). Stratiform cloud formation in the marine boundary layer. Journal of the Atmospheric Sciences, 48(19), 2141–2158.

    Article  Google Scholar 

  • Parkinson, C. L., & DiGirolamo, N. E. (2016). New visualizations highlight new information on the contrasting Arctic and Antarctic Sea ice trends since the late 1970’s. Remote Sensing of Environment, 183, 198–204. https://doi.org/10.1016/j.res.2016.05.020.

    Article  Google Scholar 

  • Persson, P. O. G., Shupe, M. D., Perovich, D., & Solomon, A. (2017). Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea ice-growth: Observations of midwinter SHEBA conditions. Climate Dynamics, 49, 1341–1364. https://doi.org/10.1007/s00382-016-3383-1.

    Article  Google Scholar 

  • Pinto, J. O., Curry, J. A., & Fairall, C. W. (1997). Radiative characteristics of the Arctic atmosphere during spring as inferred from ground-based measurements. Journal of Geophysical Research, 102(D6), 6941–6952.

    Article  Google Scholar 

  • Qiu, S., Dong, X., Xi, B., & Li, J.-L. F. (2015). Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. Journal of Geophysical Research – Atmospheres, 120, 7737–7746. https://doi.org/10.1002/2014JD023022.

    Article  Google Scholar 

  • Ruffieux, D., Persson, P. O. G., Fairall, C. W., & Wolfe, D. E. (1992). Ice pack and lead surface energy budgets during LEADEX 1992. Journal of Geophysical Research, 100, 4593–4612.

    Article  Google Scholar 

  • Schweiger, A. J., Lindsay, R. W., Vavrus, S., & Francis, J. A. (2008). Relationships between Arctic Sea ice and clouds during autumn. Journal of Climate, 21, 4799–4810.

    Google Scholar 

  • Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 1334–1337.

    Article  Google Scholar 

  • Sedlar, J., & Shupe, M. D. (2014). Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus. Atmospheric Chemistry and Physics, 14, 3461–3478. https://doi.org/10.5195/acp-14-3461-2014.

    Article  Google Scholar 

  • Sedlar, J., & Tjernström, M. (2009). Stratiform cloud – Inversion characterization during the Arctic melt season. Boundary-Layer Meteorology, 132, 455–474. https://doi.org/10.1007/s10546-009-9407-1.

    Article  Google Scholar 

  • Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Birch, C. E., Leck, C., Sirevaag, A., & Nicolaus, M. (2011). A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dynamics, 37, 1643–1660. https://doi.org/10.1007/s00382-010-0937-6.

    Article  Google Scholar 

  • Sedlar, J., Shupe, M. D., & Tjernström, M. (2012). On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. Journal of Climate, 25, 2374–2393. https://doi.org/10.1175/JCLI-D-11-00186.1.

    Article  Google Scholar 

  • Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004.

    Article  Google Scholar 

  • Shupe, M. D. (2011). Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. Journal of Applied Meteorology and Climatology, 50, 645–661. https://doi.org/10.1175/2010JAMC2468.1.

    Article  Google Scholar 

  • Shupe, M. D., & Intrieri, J. M. (2004). Cloud radiative forcing at the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17, 616–628.

    Article  Google Scholar 

  • Shupe, M. D., Uttal, T., Matrosov, S. Y., & Frisch, A. S. (2001). Cloud water contents and hydrometeor sizes during the FIRE Arctic clouds experiment. Journal of Geophysical Research, 106(D14), 15015–15028.

    Article  Google Scholar 

  • Shupe, M. D., Uttal, T., & Matrosov, S. Y. (2005). Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. Journal of Applied Meteorology, 44, 1544–1562.

    Article  Google Scholar 

  • Shupe, M. D., Kollias, P., Persson, P. O. G., & McFarquhar, G. M. (2008). Vertical motions in Arctic mixed-phase Stratiform clouds. Journal of the Atmospheric Sciences, 65, 1304–1322. https://doi.org/10.1175/2007JAS2479.1.

    Article  Google Scholar 

  • Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R., Starkweather, S. M., & Shiobara, M. (2011). Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. Journal of Applied Meteorology and Climatology, 50, 626–644. https://doi.org/10.1175/2010JAMC2467.1.

    Article  Google Scholar 

  • Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., & Leck, C. (2013). Cloud and boundary layer interactions over the Arctic Sea ice in late summer. Atmospheric Chemistry and Physics, 13, 9379–9400. https://doi.org/10.5194/acp-13-9379-2013.

    Article  Google Scholar 

  • Solomon, A., Shupe, M. D., Persson, P. O. G., & Morrison, H. (2011). Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmospheric Chemistry and Physics, 11, 10127–10148. https://doi.org/10.5194/acp-11-10127-2011.

    Article  Google Scholar 

  • Sotiropoulou, G., & coauthors. (2016). Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice Surfaces during Melt and Freeze-Up Seasons. Journal of Climate, 29, 8721–8744. https://doi.org/10.1175/JCLI-D-16-0211.1.

    Article  Google Scholar 

  • Sotiropoulou, G., Sedlar, J., Tjernström, M., Shupe, M. D., Brooks, I. M., & Persson, P. O. G. (2014). The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmospheric Chemistry and Physics, 14, 12573–12592. https://doi.org/10.5194/acp-14-12573-2014.

    Article  Google Scholar 

  • Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., et al. (2017). Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth System Science Data, 9, 881–904.

    Article  Google Scholar 

  • Stephens, G. L. (1978). Radiation profiles in extended water clouds. II: Parameterization schemes. Journal of the Atmospheric Sciences, 35, 2123–2132.

    Article  Google Scholar 

  • Taylor, P. C., Kato, S., Xu, K.-M., & Cai, M. (2015). Covariance between Arctic Sea ice and clouds within atmospheric state regimes at the satellite footprint level. Journal of Geophysical Research – Atmospheres, 120, 12656–12678. https://doi.org/10.1002/2015JD023520.

    Article  Google Scholar 

  • Tjernström, M., & coauthors. (2014). The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design. Atmospheric Chemistry and Physics, 14, 2823–2869. https://doi.org/10.5194/acp-14-2823-2014.

    Article  Google Scholar 

  • Tjernström, M., & coauthors. (2015). Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophysical Research Letters, 42, 1–9. https://doi.org/10.1002/2015GL064373.

    Article  Google Scholar 

  • Tjernström, M., & Graversen, R. G. (2009). The vertical structure of the lower Arctic troposphere analysed from observations and ERA-40 reanalysis. Quarterly Journal of the Royal Meteorological Society, 135, 431–433. https://doi.org/10.1002/qj.380.

    Article  Google Scholar 

  • Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S. P., & Targino, A. (2004). The summertime Arctic atmosphere. Meteorological measurements during the Arctic Ocean experiment 2001. Bulletin of the American Meteorological Society, 85(9), 305–321.

    Article  Google Scholar 

  • Uttal, T., & coauthors. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83(2), 255–276.

    Article  Google Scholar 

  • Vavrus, S. (2004). The impact of cloud feedbacks on Arctic climate under greenhouse forcing. Journal of Climate, 17, 603–615.

    Article  Google Scholar 

  • Vavrus, S., Holland, M. M., & Bailey, D. A. (2011). Changes in Arctic clouds during intervals of rapid sea ice loss. Climate Dynamics, 36, 1475. https://doi.org/10.1007/s00382-010-0816-0.

    Article  Google Scholar 

  • Vihma, et al. (2016). The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research – Biogeosciences, 121, 586–620. https://doi.org/10.1002/2015JG003132.

    Article  Google Scholar 

  • Walsh, J. E., & Chapman, W. L. (1998). Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. Journal of Climate, 11, 3030–3045.

    Article  Google Scholar 

  • Wang, X., & Key, J. (2005). Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder data set. Part I: Spatial and temporal characteristics. Journal of Climate, 18(14), 2558–2574.

    Article  Google Scholar 

  • Woods, C., Caballero, R., & Svensson, G. (2013). Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophysical Research Letters, 40, 4717–4721. https://doi.org/10.1002/grl.50912.

    Article  Google Scholar 

  • Wu, D. L., & Lee, J. N. (2012). Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss. Journal of Geophysical Research, 117, D07107. https://doi.org/10.1029/2011JD017050.

    Article  Google Scholar 

  • Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., & Rossow, W. B. (2018). The international satellite cloud climatology project H-series climate data record product. Earth System Science Data, 10, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

Abhay Devasthale would like to acknowledge the support from SMHI, EU Horizon 2020 project INTAROS and Swedish Research Council (Vetenskapsrådet). The availability of data records from EUMETSAT/CM-SAF, EUMETSAT/OSI-SAF, NOAA/NCDC/PATMOS-X, NOAA/NCDC/ISCCP, ESA Cloud CCI, and NASA/AIRS is gratefully acknowledged. The authors also thank the Science Teams behind these climate data records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kokhanovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devasthale, A., Sedlar, J., Tjernström, M., Kokhanovsky, A. (2020). A Climatological Overview of Arctic Clouds. In: Kokhanovsky, A., Tomasi, C. (eds) Physics and Chemistry of the Arctic Atmosphere. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33566-3_5

Download citation

Publish with us

Policies and ethics