Skip to main content
Log in

Reconstruction of the ashfall at Bezymyanny volcano during the eruption of December 24, 2006 by using a mesoscale model of the atmospheric transport of ash particles

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Intensive volcanic eruptions of an explosive type are accompanied by release of a great amount of ash particles into the atmosphere. These particles are finely dispersed (<2 mm in size) products of magmatic melt fermentation, and their precipitation on the underlying surface is largely controlled by atmospheric transport. The present work proposes an approach to estimate the total released mass (TRM) of ash at minimal a priori data on dynamics of explosive process, on the basis of, first, direct numerical modeling of atmospheric transport and gravity precipitation of ash particles and, second, field observation data. To exemplify, the case study of the strong explosive eruption of Bezymyanny volcano on December 24, 2006 is considered (TRM > 3.8 Mt, height of eruptive column is 13–15 km above sea level). The results of the model calculations for this event are compared to independent TRM estimates by using standard methods based on the counting of precipitation areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Robock, “Volcanic eruptions and climate,” Rev. Geophys. 38 (2), 191–219 2000.

    Article  Google Scholar 

  2. S. Self, “The effects and consequences of very large explosive volcanic eruptions,” Philos. Trans. R. Soc. Am. 364, 2073–2097 2006.

    Article  Google Scholar 

  3. A. V. Eliseev and I. I. Mokhov, “Influence of volcanic activity on climate change in the past several centuries: Assessments with a climate model of intermediate complexity,” Izv., Atmos. Ocean. Phys. 44 (6), 671–683 2008.

    Article  Google Scholar 

  4. Yu. B. Slezin, Mechanism of Volcanic Eruptions (Stationary Model) (Nauchnyi mir, Moscow, 1998) [in Russian].

    Google Scholar 

  5. M. Alidibirov and D. B. Dingwell, “Magma fragmentation by rapid decompression,” Nature 380, 146–148 1996.

    Article  Google Scholar 

  6. A. A. Barmin and O. E. Mel’nik, “Hydrodynamics of volcanic eruptions,” Usp. Mekh. 1 (1), 32–60 2002.

    Google Scholar 

  7. I. I. Gushchenko, Ashes from North Kamchatka and Conditions of their Formation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  8. D. M. Pyle, “The thickness, volume and grainsize of tephra fall deposits,” Bull. Volcanol. 51 (1), 1–15 1989.

    Article  Google Scholar 

  9. J. Fierstein and M. Nathenson, “Another look at the calculation of fallout tephra volumes,” Bull. Volcanol. 54, 156–167 1992.

    Article  Google Scholar 

  10. A. W. Hurst, ASH-FALL—A computer Program for Estimating Volcanic Ash Fallout. Report and Users Guide (Institute of Geological and Nuclear Sciences, Wellington, 1994).

    Google Scholar 

  11. A. W. Hurst and R. Turner, “Performance of the program ASH-FALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand,” J. Geol. Geophys. 42 (4), 615–622 1999.

    Article  Google Scholar 

  12. G. Macedonio, A. Costa, and A. Longo, “A computer model for volcanic ash fallout and assessment of subsequent hazard,” Comput. Geosci. 31 (7), 837–845 2005.

    Article  Google Scholar 

  13. C. Bonadonna, G. Macedonio, and R. S. J. Sparks, “Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: Application to hazard assessment on Montserrat, in The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, Ed. by T. H. Druitt and B. P. Kokelaar (Geological Society of London, London, 2002), pp. 517–537.

    Google Scholar 

  14. R. Bonasia, G. Macedonio, A. Costa, et al., “Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure,” J. Volcanol. Geotherm. Res. 189, 238–246 2009.

    Article  Google Scholar 

  15. L. J. Connor and C. B. Connor, Inversion is the key to dispersion: Understanding eruption dynamics by inverting tephra fallout, in Statistics in Volcanology. Special Publications of IAVCEI, Ed. by H. M. Mader, S. G. Cole, C. B. Connor, and L. J. Connor (Geological Society of London, London, 2006), pp. 231–242.

    Google Scholar 

  16. A. C. M. Volentik, C. Bonadonna, C. B. Connor, et al., “Modeling tephra dispersal in absence of wind: Insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador),” J. Volcanol. Geotherm. Res. 193 (1–2), 117–136 (2010).

    Article  Google Scholar 

  17. N. A. Malik, “The December 24, 2006 eruption of Bezymyannyi volcano, Kamchatka,” J. Volcanol. Seismol. 5 (4), 268–277 2011.

    Article  Google Scholar 

  18. K. B. Moiseenko and N. A. Malik, “Estimates of total ash content from 2006 and 2009 explosion events at Bezymianny volcano with use of a regional atmospheric modeling system,” J. Volcanol. Geotherm. Res. 270, 53–75 2014.

    Article  Google Scholar 

  19. K. B. Moiseenko and N. A. Malik, “Estimation of total discharges of volcanic ash using atmospheric-transport models,” J. Volcanol. Seismol. 9 (1), 30–47 2015.

    Article  Google Scholar 

  20. A. I. Malyshev, The Life of Volcano (UrO RAN, Yekaterinburg, 2000) [in Russian].

    Google Scholar 

  21. O. A. Girina, “Chronology of Bezymianny volcano activity, 1956–2010,” J. Volcanol. Geotherm. Res. 263, 22–41 2013.

    Article  Google Scholar 

  22. A. J. Carter, O. A. Girina, M. S. Ramsey, and Yu. V. Demyanchuk, “ASTER and field observations of the 24 December 2006 eruption of Bezymianny volcano, Russia,” Remote Sens. Environ. 112, 2569–2577 2008.

    Article  Google Scholar 

  23. C. J. Tremback, W. A. Lyons, W. P. Thorson, and R. L. Walko, “An emergency response and local weather forecasting software system”, in Eighth Joint Conf. on Applications of Air Pollution Meteorology with A&WMA (American Meteorological Society, Nashville, Tennessee, 1994), pp. 219–223.

    Google Scholar 

  24. R. A. Pielke, W. R. Cotton, C. J. Tremback, et al., “A comprehensive meteorological modeling system— RAMS,” Meteorol. Atmos. Phys. 49, 69–91 1992.

    Article  Google Scholar 

  25. R. L. Walko and C. J. Tremback, HYPACT; the Hybrid Particle and Concentration Transport Model. User’s Guide (Mission Research Corporation, Ft Collins, 1995).

    Google Scholar 

  26. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. Space Phys. 20, 851–875 1982.

    Article  Google Scholar 

  27. H. M. Helfand and J. C. Labraga, “Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence,” J. Atmos. Sci. 45, 113–132 1988.

    Article  Google Scholar 

  28. R. Turner and T. Hurst, “Factors influencing volcanic ash dispersal from the 1995 and 1996 eruptions of Mount Ruapehu, New Zealand,” J. Appl. Meteorol. 40, 56–69 2001.

    Article  Google Scholar 

  29. L. Wilson and T. Huang, “The influence of shape on the atmospheric settling velocity of volcanic ash particles,” Earth Planet. Sci. Lett. 44, 311–324 1979.

    Article  Google Scholar 

  30. G. T. Csanady, “Turbulent diffusion of heavy particles in the atmosphere,” J. Atmos. Sci. 20 (3), 201–208 1963.

    Article  Google Scholar 

  31. L.-P. Wang and D. E. Stock, “Dispersion of heavy particles in turbulent motion,” J. Atmos. Sci. 50 (13), 1897–1913 1993.

    Article  Google Scholar 

  32. P. J. Walklate, “A Markov-chain particle dispersion model based on airflow data: Extension to large water droplets,” Boundary-Layer Meteorol. 37, 313–318 1986.

    Article  Google Scholar 

  33. P. J. Walklate, “A random-walk model for dispersion of heavy particles in turbulent air flow,” Boundary-Layer Meteorol. 39, 175–190 1987.

    Article  Google Scholar 

  34. M. J. Woodhouse, A. J. Hogg, J. C. Phillips, and R. S. J. Sparks, “Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull Eruption, Iceland,” J. Geophys. Res. 118 (1B), 92–109 (2013).

    Article  Google Scholar 

  35. R. J. Brown, C. Bonadonna, and A. J. Durant, “A review of volcanic ash aggregation,” Phys. Chem. Earth 45–46, 65–78 2012.

    Article  Google Scholar 

  36. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Vol. 1 (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  37. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1981).

    Google Scholar 

  38. P. C. Hansen, “Regularization, GSVD and truncated GSVD,” BIT 29, 491–504 1989.

    Article  Google Scholar 

  39. A. Hocker and V. Kartvelishvili, “SVD approach to data unfolding,” Nucl. Instrum. Methods A 372, 469–481 1996.

    Article  Google Scholar 

  40. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [In Russian].

    Google Scholar 

  41. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, 1974).

    Google Scholar 

  42. O. A. Girina, Pyroclastic Formations of Current Eruptions of Andesite Volcanoes in Kamchatka and Their Engineering and Geological Features (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  43. O. A. Girina, “Convective gravitational differentiation of pyroclastics of andesite volcanoes,” Litosfera, No. 3, 135–144 2010.

    Google Scholar 

  44. J. R. Evans, J. E. Huntoon, W. I. Rose, et al., “Particle sizes of andesitic ash fallout from vertical eruptions and co-pyroclastic flow clouds, Volcan De Colima, Mexico,” Geology 37 (10), 935–938 2009.

    Article  Google Scholar 

  45. S. A. Fedotov, “Estimate for heat and pyroclastic removal by volcanic eruptions and fumaroles on the basis of height of their jets and clouds,” Vulkanol. Seismol., No. 4, 3–28 1982.

    Google Scholar 

  46. L. G. Mastin, M. Guffanti, R. Servranckx, et al., “A multidisciplinary effort to assign realistic source parameters to models of volcanic ash–cloud transport and dispersion during eruptions,” J. Volcanol. Geotherm. Res. 186 (1–2), 10–21 (2009).

    Article  Google Scholar 

  47. A. V. Rybin, M. V. Chibisova, P. Webley, et al., “Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles,” Bull. Volcanol. 73 (9), 1377–1392 2011.

    Article  Google Scholar 

  48. E. R. Makhmudov, P. P. Firstov, and Yu. T. Kozhevnikova, “Seismic effects accompanying the eruptions of Bezymianny volcano (Kamchatka), in Natural Disasters: Research, Monitoring, Forecast. Proceedings of the 5th Sakhalin Young Scientific School, Yuzhno-Sakhalinsk, June 8–11, 2010 (IMGG FEB RAS, YuzhnoSakhalinsk, 2011), pp. 178–185.

    Google Scholar 

  49. P. P. Firstov, “Specific features of acoustic and seismic waves accompanying the eruption of Bezimmyannii in 1983–1985,” Vulkanol. Seismol., No. 2, 81–97 1988.

    Google Scholar 

  50. O. A. Girina and E. I. Gordeev, “The project KVERT—decline in volcanic hazard for aviation during explosive eruptions of volcanoes in Kamchatka and North Kuril,” Vestn. DVO RAN, No. 2 132 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Moiseenko.

Additional information

Original Russian Text © K.B. Moiseenko, N.A. Malik, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 6, pp. 658–672.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, K.B., Malik, N.A. Reconstruction of the ashfall at Bezymyanny volcano during the eruption of December 24, 2006 by using a mesoscale model of the atmospheric transport of ash particles. Izv. Atmos. Ocean. Phys. 51, 585–598 (2015). https://doi.org/10.1134/S0001433815050072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815050072

Keywords

Navigation