Skip to main content

Advertisement

Log in

Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

After 33 years of repose, one of the most active volcanoes of the Kurile island arc—Sarychev Peak on Matua Island in the Central Kuriles—erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8–16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0.4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alley RE (1996) Algorithm theoretical basis document for decorrelation stretch. Version 2.2

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a PASCAL program to assess equilibria among Fe-Mg-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  • Andreev VN, Shantser AE, Khrenov AP, Okrugin VM, Hechaev VN (1984) Eruption of the volcano Sarychev Peak in 1976. Bull Volcanol Stations 55:35–40

    Google Scholar 

  • Carn SA, Strow LL, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32:L02301. doi:10.1029/2004GL021034

    Article  Google Scholar 

  • Clarisse L, Coheur PF, Prata AJ, Hurtmans D, Razavi A, Phulpin T, Hadji-Lazaro J, Clerbaux C (2008) Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair. Atmos Chem Phys 8:7723–7734

    Article  Google Scholar 

  • Corradini S, Merucci L, Prata AJ (2009) Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of ash. Atmos Meas Tech 2:177–191

    Article  Google Scholar 

  • Corradini S, Merucci L, Prata AJ, Piscini A (2010) Volcanic ash and SO2 in the 2008 Kasatochi eruption: retrievals comparison from different IR satellite sensors. J Geophys Res. doi:10.1029/2009JD013634

    Google Scholar 

  • Glavatskii SN, Efremov GK (1948) Eruption of the volcano sarychev peak in the November 1946. Bull Volcanol Stations 15:48–52 (in Russian)

    Google Scholar 

  • Gorshkov GS (1948) Volcano Sarychev Peak. Bull Volcanol Stations 15:3–7

    Google Scholar 

  • Gorshkov GS (1967) Volcanism of the Kurile Island arc. M., Nauka, p. 287 (in Russian)

  • Gorshkov GS (1970) Volcanism and the upper mantle; investigations in the Kurile Island Arc. Plenum Publishing Corp, New York, p 385

    Google Scholar 

  • Grishin S, Melekestsev IV (2010) Lava flows from the 2009 eruption of Sarychev Peak, the Central Kuriles. Vestnik KRAUNTZ 1: 232–239. Available from: http://www.kscnet.ru/kraesc/2010/2010_15/art19.pdf.

  • Grishin S, Girina OA, Verechshaga EM, Viter IV (2010) Powerful eruption of Sarychev Peak volcano (Kurile Islands, 2009) and its impact on the plant cover. Vestnik DVO RAN, Vulkanologia i Seismologia, 3:40–50 (in Russian)

  • Gu YX, Rose WI, Schneider DJ, Bluth GJS, Watson IM (2005) Advantageous GOES IR results for ash mapping at high latitudes: cleveland eruptions 2001. Geophys Res Lett 32:L02305. doi:02310.01029/02004GL02165

    Article  Google Scholar 

  • Gushchenko II (1979) The eruption of the volcanoes in the world. M.: Nauka, p. 476 (in Russian)

  • IAVWOPSG/5 (2010) Costs of ash avoidance to US carriers during the eruptions of Redoubt and Sarychev volcanoes in 2009. Available from: http://www.2.icao.int/en/anb/met-aim/met/iavwopsg/IAVWOPSGMeetings/IP7.pdf

  • Kearney CS, Watson IM (2009) Correcting satellite-based infrared sulfur dioxide retrievals for the presence of silicate ash. J Geophys Res 144:D22208. doi:10.1029/2008JD011407

    Article  Google Scholar 

  • Kearny CS, Dean K, Realmuto VJ, Watson IM, Dehn J, Prata F (2008) Observations of SO2 production and transport from Bezymianny volcano, Kamchatka using the Moderate Resolution Infrared Spectroradiometer (MODIS). Int J Remote Sens 29:6647–6665

    Article  Google Scholar 

  • Kienle J, Shaw GE (1979) Plume dynamics, thermal energy and long distance transport of Vulcanian eruption clouds from Augustine Volcano, Alaska. J Volcanol Geotherm Res 6(1–2):139–164

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94(4):494–506

    Article  Google Scholar 

  • Levin BW, Rybin AV, Razzhigaeva NG, Vasilenko N, Frolov pervert nurse, Mayor SalyukPa, Zharkov RV, Prytkov AS, Kozlov DN, Chernov AG, Chibisova MV, Guryanov VB, Koroteev IG, Degterev AV (2009) Complex volcano expedition “Sarychev Peak–2009” (The Kuril Island). Bull Far East Branch Russ Acad Sci 6:98–104, in Russian

    Google Scholar 

  • Levin BW, Rybin AV, Vasilenko NF, Prytkov AS, Chibisova MV, Kogan MG, Steblov GM, Frolov DI (2010) Monitoring of the eruption of the sarychev peak volcano in Matua Island in 2009 (Central Kurile Islands). Dokl Akad Nauk 435(2):255–258 (in Russian)

    Google Scholar 

  • Markhinin EK (1964) Sarychev volcano. Bull Volcanol Stations 35:44–58 (in Russian)

    Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley PW, Barsotti S, Dean K, Denlinger R, Durant A, Ewert JW, Gardner CA, Holliday AC, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to model of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res: Special Issue on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley 186 (1–2):10–21.

  • Matiella Novak MA, Watson IM, Delgado-Granados H, Rose WI, Cardenas-Gonzales L, Realmuto VJ (2008) Volcanic emissions from Popocatepetl volcano, Mexico, quantified using Moderate Resolution Imaging Spectroradiometer (MODIS) infrared data: a case study of the December 2000–January 2001 emissions. J Volcanol Geotherm Res 170:76–85

    Google Scholar 

  • Neal C, Rybin A, Chibisova M, Miller E (2008) Active volcanoes of the Kurile Islands: a reference guide for aviation users: US Geol Surv Open File Report 2008–1162, p. 10

  • Neal C, Girina O, Senyukov S, Rybin A, Osiensky J, Izbekov P, Ferguson G (2009) Russian eruption warning systems for aviation. Nat Hazards 51:245–262. doi:10.1007/s11069-009-9347-6

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Oppenheimer C (1998) Volcanological applications of meteorological satellites. Int J Rem Sens 19:2829–286

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Pavolonis MJ, Sieglaff J (2009) GOES-R Volcanic ash: detection and height. NOAA/NESDIS/STAR GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document, Version 2.0.

  • Pollack JB, Toon OB, Kane BM (1973) Optical properties of some terrestrial rocks and glasses. Icarus 19(3):72–389

    Article  Google Scholar 

  • Prata AJ (1989a) Infrared radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 16:1293–1296

    Article  Google Scholar 

  • Prata AJ (1989b) Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int J Rem Sens 10:751–761

    Article  Google Scholar 

  • Prata AJ, Bernardo C (2007) Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data. J Geophys Res 112:D20204. doi:10.1029/2006JD007955

    Article  Google Scholar 

  • Prata AJ, Keirkmann J (2007) Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys Res Lett 34:L05813. doi:10.1029/2006GL028691

    Article  Google Scholar 

  • Prata F, Bluth G, Rose W, Schneider D, Tupper A (2001) Comments on “Failures in detecting volcanic ash from a satellite-based technique”. Rem Sens Environ 78:341–346

    Article  Google Scholar 

  • Prata AJ, Rose WI, Self S, O’Brien D (2003) Global, long-term sulphur dioxide measurements from TOVS data: a new tool for studying explosive volcanism and climate. Volcanism and the Earth’s Atmosphere. American Geophysical Union, Washington, DC, pp 77–92

    Google Scholar 

  • Realmuto VJ, Worden HA (2000) The impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sulfur dioxide emissions: a case study from the Puu Oo vent of Kilauea Volcano, Hawaii. J Geophys Res 105(B9): 21497–21508

    Google Scholar 

  • Realmuto VJ, Abrams MJ, Buongiorno MF, Pieri DC (1994) The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes; a case study from Mount Etna, Sicily, July 29, 1986. J Geophys Res B 99:481–488

    Article  Google Scholar 

  • Realmuto VJ, Sutton AJ, Elias T (1997) Multispectral thermal infrared mapping of sulfur dioxide plumes; a case study from the East Rift Zone of Kilauea Volcano, Hawaii. J Geophys Res B 102:15057–15072

    Article  Google Scholar 

  • Rose WI, Bluth GJS, Ernst GGJ (2000) Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary. Philos Trans R Soc Lon: A Math Phys Eng Sci 358:1585–1606

    Article  Google Scholar 

  • Rybin AV, Karagusov YV, Izbekov P, Terentyev NS, Guryanov VB, Neal C, Dean K (2004) Status of monitoring active volcanoes of the Kurile Islands: Present and future: in Proceedings of the Second International Conference on Volcanic Ash and Aviation Safety. Published by the Office of the Federal Coordinator for Meteorological Services and Supporting Research, Session 2:61–66

  • Schneider DJ, Rose WI, Kelley L (1995) Tracking of 1992 eruption clouds from Crater Peak vent of Mount Spurr Volcano, Alaska, using AVHRR. In Keith TEC (ed) The 1992 eruptions of Crater Peak vent, Mount Spurr Volcano, Alaska, US Geol Surv Bull 2139:27–36

  • Shilov VN (1962) The eruption of volcano Sarychev Peak in 1960. The book of SakhSRI 12:143–149 (in Russian)

    Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. Available from: http://www.volcano.si.edu/world/.

  • Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience Press, Inc., p. 349

  • Simpson JJ, Hufford G, Pieri D, Berg J (2000) Failures in detecting volcanic ash from satellite based technique. Rem Sens Environ 72:191–217

    Article  Google Scholar 

  • Simpson JJ, Hufford GL, Pieri D, Servranckx R, Berg JS, Bauer C (2001) The February 2001 eruption of Mount Cleveland, Alaska: case study of an aviation hazard. Weather Forecast 17:691–704

    Article  Google Scholar 

  • Smithsonian Institution, (1976) Sarychev. Scientific Event Alert Network Bulletin 1(13)

  • Smithsonian Institution (1981a) Sarychev Peak. Scientific Event Alert Network Bulletin 6(4)

  • Smithsonian Institution (1981b) Alaid volcano. Scientific Event Alert Network Bulletin 6(12)

  • Smithsonian Institution (1987) Sarychev Peak. Scientific Event Alert Network Bulletin 12 (4)

  • Smithsonian Institution (1989) Sarychev Peak. Scientific Event Alert Network Bulletin 14(3)

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester, p 589

    Google Scholar 

  • Thomas HE, Watson IM, Kearney CS, Carn SA, Murray SJ (2009) A multi-sensor comparison of sulphur dioxide emissions from the 2005 eruption of Sierra Negra volcano, Galapagos Islands. Rem Sens Environ 113:1331–1342

    Article  Google Scholar 

  • Urai M (2004) Sulfur dioxide flux estimation from volcanoes using Advanced Spaceborne Thermal Emission and Reflection Radiometer—a case study of Miyakejima volcano. Jpn J Volcanol Geotherm Res 134:1–13

    Article  Google Scholar 

  • Urai M, Ishizuka Y (2009) Satellite based observation and interpretation of the 2009 Sarychev Peak eruption on Matua Island of Kurile Islands, Russia. Eos Trans. AGU, 90(52), Fall Meet. Abstract V21B-1984.

  • Watson IM, Realmuto VJ, Rose WI, Prata AJ, Bluth GJS, Gu Y, Basder CE, Yu T (2004) Thermal infrared remote sensing of volcanic emissions using the Moderate Resolution Imaging Spectroradiometer (MODIS). J Volcanol Geotherm Res 135:75–89

    Article  Google Scholar 

  • Webley PW, Dehn J, Lovick J, Dean KG, Bailey JE, Valcic L (2009) Near real time volcanic ash cloud detection: experiences from the Alaska Volcano Observatory. J Volcanol Geotherm Res: Special Issue on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley 186(1–2):79–90

    Google Scholar 

  • Webley PW, Dean KG, Dehn J, Bailey JE, Peterson R (2010) Volcanic-ash dispersion modeling of the 2006 eruption of Augustine volcano using the Puff model, chapter 21 of Power. JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine Volcano, Alaska. US Geol Surv Prof Pap 1769:507–526

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Wen S, Rose WI (1994) Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res 99(D3):5421–5431

    Article  Google Scholar 

  • Woods AW, Self S (1992) Thermal disequilibrium at the top of volcanic clouds and its effects on estimates of the column height. Nat 355:628–630

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the scientific staff of SVERT and AVO who contributed to the overall response to this significant and dangerous eruption. We acknowledge the hard work and dedication of Japanese, Russian, and American air traffic controllers and aviation meteorologists who, in collaboration with volcanological colleagues, transmit hazard information to the aviation industry in a timely manner. In addition, we would like to thank Rick Wessels and David Schneider of the US Geological Survey for their useful and informative reviews of the manuscript. We highly appreciate constructive peer reviews of Dr. Fred Prata and Dr. Alexander Belousov in the submission process to Bulletin of Volcanology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Webley.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybin, A., Chibisova, M., Webley, P. et al. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles. Bull Volcanol 73, 1377–1392 (2011). https://doi.org/10.1007/s00445-011-0481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0481-0

Keywords

Navigation