Skip to main content
Log in

Russian studies of atmospheric radiation in 2003–2006

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The Russian Radiation Commission, in cooperation with interested departments and institutions, has held two international symposia on atmospheric radiation for the Commonwealth of Independent States in the recent past. The participants of the symposia discussed problems that are currently particularly relevant in atmospheric physics: radiative transfer, atmospheric optics, greenhouse gases, clouds, aerosols, climate changes, remote sensing, and new observational data. Five directions covering the complete spectrum of investigations on atmospheric radiation are presented in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Postylyakov, “Spherical Radiative Transfer Model with Computation of Layer Air Mass Factors and Some of Its Applications,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 314–328 (2004) [Izv., Atmos. Ocean. Phys. 40, 276–290 (2004)].

    Google Scholar 

  2. O. V. Postylyakov, “Radiative Transfer Model MCC++ with Evaluation of Weighting Functions in Spherical Atmosphere for Use in Retrieval Algorithms,” Adv. Space Res. 34, doi:10.1016/j.asr.2003.07.070, 721–726 (2004).

    Google Scholar 

  3. O. V. Postylyakov, “Linearized Vector Radiative Transfer Model MCC++ for a Spherical Atmosphere,” J. Quantum Spectrosc. Radiat. Transfer 88, doi: 10.1016//j.jqsrt.2003.12.033, 297–317 (2004).

    Google Scholar 

  4. O. S. Ugolnikov, O. V. Postylyakov, and I. A. Maslov, “Effects of Multiple Scattering and Atmospheric Aerosol on the Polarization of the Twilight Sky,” J. Quantum Spectrosc. Radiat. Transfer 88, doi: 10.1016/j.jqsrt.2003.12.033, 233–241 (2004).

    Google Scholar 

  5. O. V. Postylyakov and I. V. Mitin, “Modeling of Effect of Polarization on UV Sky Radiance during Twilight,” Adv. Space Res. 35, doi: 10.1016/j.asr.2005.04.019, 465–469 (2005).

    Google Scholar 

  6. R. P. Loughman, E. Griffioen, L. Oikarinen, et al., “Comparison of Radiative Transfer Models for Limb-Viewing Scattered Sunlight Measurements,” J. Geophys. Res. 109, doi: 10.1029/2003JD003854, D06303 (2004).

  7. V. P. Boudak and A. V. Kozelsky, “Backscattering Radiance Calculation in Turbid Medium with Anisotropic Scattering by Spherical Harmonics Method,” Proc. SPIE-Int. Soc. Opt. Eng. 5026, 135–139 (2003).

    Google Scholar 

  8. V. P. Boudak and A. V. Kozelsky, “About the Precision and Application Range of the Small Angle Approximation in the Theory of Radiative Transfer,” Proc. SPIE-Int. Soc. Opt. Eng. 5743, 248–255 (2004).

    Google Scholar 

  9. V. P. Budak and A. V. Kozel’skii, “On the Accuracy and Ranges of Validity of the Small-Angle Approximation,” Opt. Atmos. Okeana 18, 38–44 (2005).

    Google Scholar 

  10. V. P. Budak, A. V. Kozel’skii, and E. N. Savitskii, “Improvement of the Convergence of the Method of Spherical Harmonics for Strongly Anisotropic Scattering,” Opt. Atmos. Okeana 17, 36–41 (2004).

    Google Scholar 

  11. V. P. Budak and O. P. Melamed, “Modified Method of Spherical Harmonics for Determining the Scattering Function of a Point in a Turbid Layer,” Opt. Atmos. Okeana 19, 1047–1052 (2006).

    Google Scholar 

  12. V. P. Budak and S. V. Korkin, “Mathematical Model of the Polarized Light Reflection by the Turbid Medium Slab with an Anisotropic Scattering,” Proc. SPIE-Int. Soc. Opt. Eng. 5888, 363–370 (2005).

    Google Scholar 

  13. V. P. Budak and S. V. Korkin, “The Vectorial Radiative Transfer Equation Problem in the Small Angle Modification of the Spherical Harmonics Method with the Determination of the Solution Smooth Part,” Proc. SPIE-Int. Soc. Opt. Eng. 6408, 1–8 (2006).

    Google Scholar 

  14. V. P. Budak, S. V. Korkin, and O. P. Melamed, “Effective Computational Method of the Light Fields in 3D Medium with Anisotropic Scattering,” Proc. SPIE-Int. Soc. Opt. Eng. 5979, 125–130 (2005).

    Google Scholar 

  15. A. Marshak and A. Davis, Three-Dimensional Radiative Transfer in Cloudy Atmospheres (Springer, Berlin, 2005).

    Google Scholar 

  16. O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, et al., “Radiative Transfer in Horizontally and Vertically Inhomogeneous Turbid Media,” in Light Scattering Reviews, Ed. by A. A. Kokhanovsky (Springer-Praxis, Chichester, 2007).

    Google Scholar 

  17. O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, et al., “The Influence of Neighboring Clouds on the Clear Sky Reflectance Studied with the 3-D Transport Code RADUGA,” J. Quant. Spectrosc. Radiat. Transfer 94, 405–424 (2005).

    Google Scholar 

  18. T. A. Sushkevich, Mathematical Models of Radiative Traansfer (BINOM, Laboratoriya znanii, Moscow, 2006) [in Russian].

    Google Scholar 

  19. A. O. Semenov and G. M. Shved, “Effect of Vertical Variation in Temperature on a Nonequilibrium Population of the Vibrational States of Molecules in Planetary Atmospheres,” Astron. Vestn. 37, 336–343 (2003).

    Google Scholar 

  20. V. P. Ogibalov, S. N. Khvorostovskii, and G. M. Shved, “Enhancement of Infrared Emissions of Carbon Dioxide during Solar Proton Events,” Geomagn. Aeron. 46, 159–167 (2006).

    Google Scholar 

  21. V. I. Fomichev and V. P. Ogibalov, “Parameterization of Solar Heating by the Near IR CO2 Bands in the Mesosphere,” Adv. Space Res. 32, 759–764 (2003).

    Google Scholar 

  22. G. M. Shved, V. P. Ogibalov, and A. I. Pogoreltsev, “Effect of Planetary Waves on Cooling the Upper Mesosphere and Lower Thermosphere by the CO2 15-μm Emission,” Ann. Geophys. 22, 3383–3394 (2004).

    Google Scholar 

  23. V. P. Ogibalov, A. I. Pogorel’tsev, I. N. Fedulina, and G. M. Shved, “Additional Radiative Cooling of the Upper Mesosphere and Lower Thermosphere Caused by Tidal Perturbations in Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 92–101 (2006) [Izv., Atmos. Ocean. Phys. 42, 84–92 (2006)].

    Google Scholar 

  24. V. I. Fomichev, V. P. Ogibalov, and S. R. Beagley, “Solar Heating by the Near-IR CO2 Bands in the Mesosphere,” Geophys. Res. Lett. 31, doi: 10.1029/2004GL020324, L21102 (2004).

  25. A. O. Semenov and G. M. Shved, “Semiempirical Model of the Global Mean Temperature Structure of the Earth’s Thermosphere with a Varying Carbon Dioxide Content,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 291–305 (2004) [Izv., Atmos. Ocean. Phys. 40, 255–268 (2004)].

    Google Scholar 

  26. B. A. Fomin, “Monte-Carlo Algorithm for Line-by-Line Calculations of Thermal Radiation in Multiple Scattering Layered Atmospheres,” J. Quantum Spectrosc. Radiat. Transfer 98, doi: 1016/j.jqsrt.2005.05.078, 107–115 (2006).

    Google Scholar 

  27. B. A. Fomin, M. P. Correa, J. C. Ceballos, et al., “FLISS: A User-Friendly Satellite Signal Simulator Using Monte-Carlo and Line-by-Line Techniques for Multiple Scattering Layered Atmospheres,” in Proceedings of the 2005 Eumetsat Meteorological Satellite Conference (Dubrovnik, Croatia, 2005) (EUM 46, Darmstadt, 2005), pp. 490–493.

    Google Scholar 

  28. B. A. Fomin, T. A. Udalova, and E. A. Zhitnitskii, “Evolution of Spectroscopic Information over the Last Decade and Its Effect on Line-by-Line Calculations for Validation of Radiation Codes for Climate Models,” J. Quant. Spectrosc. Radiat. Transfer 86, 73–85 (2004).

    Google Scholar 

  29. R. N. Halthore, D. Crisp, S. E. Schwartz, et al., “Intercomparison of Shortwave Radiative Transfer Codes and Measurements,” J. Geophys. Res. 110, doi: 10.1029/2004JD005293, D02106 (2005).

  30. A. Plana-Fattori, Ph. Dubuisson, B. A. Fomin, and M. P. Correa, “Estimating the Atmospheric Water Vapor Content from Multi-Filter Rotating Shadow-Band Radiometry at Sao Paulo, Brazil,” Atmos. Res 71, 171–192 (2004).

    Google Scholar 

  31. R. Cahalan, L. Oreopoulos, A. Marshak, et al., “The International Intercomparison of 3D Radiation Codes (I3RC): Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres,” Bull. Am. Meteorol. Soc. 86, 1275–1293 (2005).

    Google Scholar 

  32. T. B. Zhuravleva and A. L. Marshak, “On the Validation of the Poisson Model of Broken Clouds,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 783–797 (2005) [Izv., Atmos. Ocean. Phys. 41, 713–725 (2005)].

    Google Scholar 

  33. T. B. Zhuravleva, I. M. Nasrtdinov, S. M. Sakerin, et al., “Numerical Simulation of the Angular Pattern of Sky Brightness near the Horizon during Observations from the Earth: 2. Aerosol-Gas Atmosphere,” Opt. Atmos. Okeana 16, 1065–1074 (2003).

    Google Scholar 

  34. T. B. Zhuravleva, I. M. Nasrtdinov, and S. M. Sakerin, “Numerical Simulation of the Angular Pattern of Sky Brightness near the Horizon during Observations from the Earth: 1. Aerosol Atmosphere,” Opt. Atmos. Okeana 16, 537–546 (2003).

    Google Scholar 

  35. S. M. Sakerin, T. B. Zhuravleva, and I. M. Nasrtdinov, “Numerical Simulation of the Angular Pattern of Sky Brightness near the Horizon during Observations from the Earth: 3. Regularities of the Angular Distribution,” Opt. Atmos. Okeana 18, 242–251 (2005).

    Google Scholar 

  36. T. B. Zhuravleva, V. E. Pavlov, V. V. Pashnev, and A. S. Shestukhin, “Integral and Difference Methods for the Determination of the Aerosol Scattering Optical Depth from Sky Brightness Data,” J. Quant. Spectr. Radiat. Transfer 88, 191–209 (2004).

    Google Scholar 

  37. A. G. Petrushin, “Parameterization of Basic Optical Radiation Scattering Properties of Ice Crystal Particles,” Proc. SPIE-Int. Soc. Opt. Eng. 5829, 138–150 (2005).

    Google Scholar 

  38. L. R. Dmitrieva-Arrago, “Methods of Short-Range Forecasting of Nonconvective Clouds and Precipitation on the Basis of a Model for Moisture Transformation with Consideration for the Parametrization of Microphysical Processes: a Method of Forecasting Precipitation from the Calculated Water Content and Parametrization of Microphysical Processes in Nonconvective Clouds,” Meteorol. Gidrol., No. 3, 27–49 (2004).

  39. L. Dolin, G. Gilbert, I. Levin, and A. Luchinin, Theory of Imaging through Wavy Sea Surface (Publ. of Inst. of Applied Physics RAS, N. Novgorod, 2006), ISBN 5-8048.

    Google Scholar 

  40. G. D. Gil’bert, L. S. Dolin, I. M. Levin, et al., “Influence of Illumination Conditions on the Sea-Bottom Visibility,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 126–135 (2006) [Izv., Atmos. Ocean. Phys. 42, 115–123 (2006)].

    Google Scholar 

  41. O. Naumenko, O. Leshchishina, and A. Campargue, “High Sensitivity Absorption Spectroscopy of HDO by ICLAS-VeCSEL between 9100 and 9640 cm−1,” J. Mol. Spectrosc. 236, 58–69 (2006).

    Google Scholar 

  42. Y. Ding, V. I. Perevalov, S. A. Tashkun, et al., “16O13C18O: High-Resolution Absorption Spectrum between 4000 and 9500 cm−1 and Global Fitting of Vibration-Rotational Line Positions,” J. Mol. Spectrosc. 222, 276–283 (2003).

    Google Scholar 

  43. L. Wang, V. I. Perevalov, S. A. Tashkun, et al., “Absolute Line Intensities of 13C16O2 in the 4200–8500 cm−1 Region,” J. Mol. Spectrosc. 234, 84–92 (2005).

    Google Scholar 

  44. J. V. Auwera, C. Claveau, J.-L. Teffo, et al., “Absolute Line Intensities of 13C16O2 in the 3090–3920 cm−1 Region,” J. Mol. Spectrosc. 235, 77–83 (2006).

    Google Scholar 

  45. O. V. Naumenko, S. Voronina, and S.-M. Hu, “High Resolution Fourier Transform Spectrum of HDO in the 7500–8200 cm−1 Region,” J. Mol. Spectrosc. 227, 151–157 (2004).

    Google Scholar 

  46. J.-L. Teffo, L. Daumont, C. Claveau, et al., “Infrared Spectra of the 16O12C17O and 16O12C18O Species of Carbon Dioxide: I. The 500–1500 cm−1 Region: II. The 1500–3000 cm−1 Region,” J. Mol. Spectrosc. 219, 271–281 (2003).

    Google Scholar 

  47. V. I. Perevalov, O. M. Lyulin, D. Jacquemart, et al., “Global Fitting of Line Intensities of Acetylene Molecule in the Infrared Using the Effective Operator Approach,” J. Mol. Spectrosc. 218, 180–189 (2003).

    Google Scholar 

  48. Y. Ding, V. I. Perevalov, S. A. Tashkun, et al., “Weak Overtone Transitions of N2O around 1.05 μm by ICLAS-VECSEL,” J. Mol. Spectrosc. 220, 80–86 (2003).

    Google Scholar 

  49. N. N. Lavrent’eva and V. I. Starikov, “Approximation of Resonance Functions for Real Trajectories in Collision Broadening Theory: I. Electrostatic Interactions, Real Parts,” Opt. Atmos. Okeana 18, 814–819 (2005).

    Google Scholar 

  50. S. V. Ivanov, “Peculiarities of Atom-Quasidiatom Collision Complex Formation: Classical Trajectory Study,” Mol. Phys. 102, 1871–1880 (2004).

    Google Scholar 

  51. S. V. Ivanov, L. Nguyen, and J. Buldyreva, “Comparative Analysis of Purely Classical and Semiclassical Approaches to Collision Line Broadening of Polyatomic Molecules: I. C2H2-Ar Case,” J. Mol. Spectrosc. 233, 60–67 (2005).

    Google Scholar 

  52. S. E. Lokshtanov, S. V. Ivanov, and A. A. Vigasin, “Statistical Physics Partitioning and Classical Trajectory Analysis of the Phase Space in CO2-Ar Weakly Interacting Pairs,” J. Mol. Struct. 742, 31–36 (2005).

    Google Scholar 

  53. D. Bykov, N. N. Lavrentieva, V. N. Saveliev, et al., “Half-Width Temperature Dependence of Nitrogen Broadened Lines in the ν2 Band of H2O,” J. Mol. Spectrosc. 224, 164–175 (2004).

    Google Scholar 

  54. B. A. Fomin, “A k-Distribution Technique for Radiative Transfer Simulation in Inhomogeneous Atmosphere: 1. FKDM, Fast k-Distribution Model for the Longwave,” J. Geophys. Res. 109, doi: 10.1029/2003JD003802, D02110 (2004).

  55. B. A. Fomin and M. P. Correa, “A k-Distribution Technique for Radiative Transfer Simulation in Inhomogeneous Atmosphere: 2. FKDM, Fast k-Distribution Model for the Shortwave,” J. Geophys. Res. 110, doi: 10.1029/2004JD005163, D02106 (2005).

  56. M. Yu. Tretyakov, G. Yu. Golubiatnikov, V. V. Parshin, et al., “Experimental Study of Line Mixing Coefficient for 118.75 GHz Oxygen Line,” J. Mol. Spectrosc. 223, 31–38 (2004).

    Google Scholar 

  57. M. Yu. Tretyakov, M. A. Koshelev, V. V. Dorovskikh, et al., “60-GHz Oxygen Band: Precise Broadening and Central Frequencies of Fine Structure Lines, Absolute Absorption Profile at Atmospheric Pressure, Revision of Mixing Coefficients,” J. Mol. Spectrosc. 231, 1–14 (2005).

    Google Scholar 

  58. M. Yu. Tretyakov, M. A. Koshelev, I. A. Koval, et al., “Temperature Dependence of Pressure Broadening of 1-Oxygen Line at 118.75 GHz,” J. Mol. Spectrosc. 241, 66–68 (2006).

    Google Scholar 

  59. M. A. Koshelev, M. Yu. Tretyakov, G. Yu. Golubiatnikov, et al., “Broadening and Shifting of the 321-, 325- and 380-GHz Lines of Water Vapor by Pressure of Atmospheric Gases,” J. Mol. Spectrosc. 241(1), 101–108 (2007).

    Google Scholar 

  60. M. Yu. Tret’yakov, M. A. Koshelev, I. A. Koval’, et al., “Continual Absorption in a Mixture of Water Vapor and Nitrogen in the 100–210 GHz Range,” Opt. Atmos. Okeana 20, 101–105 (2007).

    Google Scholar 

  61. A. V. Domanskaya, N. N. Filippov, N. M. Grigorovich, and M. V. Tonkov, “Modeling of the Rotational Relaxation Matrix in Line-Mixing Effect Calculations,” Mol. Phys. 102, 1843–1850 (2004).

    Google Scholar 

  62. N. N. Filippov, I. M. Grigoriev, N. M. Grigorovich, and M. V. Tonkov, “Line Mixing in ν3 and Forbidden ν2 Bands of CH4 in Gaseous Helium,” Mol. Phys. 104, 2711–2718 (2006).

    Google Scholar 

  63. S. A. Tashkun, V. I. Perevalov, J-L. Teffo, et al., “CDSD-1000, the High-Temperature Carbon Dioxide Spectroscopic Databank,” J. Quantum Spectrosc. Radiat. Transfer 82, 165–196.

  64. A. D. Bykov, B. A. Voronin, A. V. Kozodoev, et al., “Information System of Molecular Spectroscopy: 1. Operation with Data,” Opt. Atmos. Okeana 17, 921–926 (2004).

    Google Scholar 

  65. A. V. Kozodoev and A. Z. Fazliev, “Information System for Solving the Problems of Molecular Spectroscopy: 2. Operations of Transforming Parameter Sets of Spectral Lines,” Opt. Atmos. Okeana 18, 760–764 (2005).

    Google Scholar 

  66. E. P. Gordov, V. N. Lykosov, and A. Z. Fazliev, “Web Portal on Environmental Sciences “ATMOS”,” Adv. Geosci., No. 8, 33–38 (2006).

  67. G. M. Abakumova, E. V. Gorbarenko, E. I. Nezval’, and O. A. Shilovtseva, Multiyear Changes in the Radiation Regime of Moscow C: Geography, Society, Environment (Gorodets, Moscow, 2004), Vol. VI, pp. 117–128 [in Russian].

    Google Scholar 

  68. Handbook on Ecological-Climatic Characteristics of Moscow, Ed. by A. A. Isaeva. (Mosk. Gos. Univ., Moscow, 2003), Vol. 1 [in Russian].

    Google Scholar 

  69. Handbook on Ecological-Climatic Characteristics of Moscow, Ed. by A. A. Isaeva. (Mosk. Gos. Univ., Moscow, 2005), Vol. 2 [in Russian].

    Google Scholar 

  70. O. A. Shilovtseva, K. N. D’yakonov, and E. A. Baldina, “Indirect Methods of Calculating the Total Photosynthetically Active Radiation from Actinometric and Meteorological Observations,” Meteorol. Gidrol., No. 1, 37–47 (2005).

  71. E. E. Sibir, V. F. Radionov, and A. A. Mishin, “Parameters of Variations in Radiation-Regime Characteristics at Russian Antarctic Stations from Analyses of the Data from the Archive of Actinometric Measurements at These Stations,” Probl. Arkt. Antarkt., No. 74, 7–18 (2003).

  72. O. M. Pokrovskii, Composition of Observations of the Atmosphere and Ocean (Gidrometeoizdat, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  73. O. M. Pokrovskii, E. L. Makhotkina, I. O. Pokrovskii, and L. M. Ryabova, Tendencies of Interannual Oscillations in Radiation-Balance Components and Albedo of the Land Surface atthe Russian Territory,” Meteorol. Gidrol., No. 5, 37–46 (2004).

  74. O. M. Pokrovskii, N. P. Korolevskaya, and L. M. Ryabova, “Modeling the Diurnal Behavior of Radiation-Balance Components with the Aid of Neuron Networks in a Remote Sensing Data Assimilation Scheme,” Issled. Zemli Kosmosa, No. 1, 313 (2004).

  75. O. M. Pokrovsky, E. L. Makhotkina, I. O. Pokrovsky, and L. M. Ryabova, “Land Surface Radiation Budget Response to Global Warming: Case Study for European and Asian Radiometric Network,” in Proceedings of the ACIA International Symposium on Climate Change in Arctic (Reykjavik, 2004) (AMAP, Oslo, 2004).

    Google Scholar 

  76. N. Y. Chubarova, Y. I. Nezval, J. Verdebout, et al., Long-Term UV Irradiance Changes over Moscow and Comparisons with UV Estimates from TOMS and METEOSAT,” Proc. SPIE: Ultraviolet Ground- and Space-Based Measurements, Models, and Effects, 63–73 (2005).

  77. A. F. Nerushev and N. V. Tereb, “Comparison of Ground-Based and Satellite Measurements of Surface Ultraviolet Radiation Expositions for Central European Russia,” Issled. Zemli Kosmosa, No. 5, 35–42 (2003).

  78. N. Tereb and A. Nerushev, “Comparison of Ground-Based and Satellite Measurement Data on Surface Ultraviolet Radiation for the Central Part of the European Region of Russia,” in Proceedings of Quadrennial Ozone Symposium (Kos, Greece, 2004), pp. 621–622.

    Google Scholar 

  79. N. A. Kramarova and G. I. Kuznetsov, “Study of the Relationship of Long-Term Variations in Total Ozone and UV Irradiance to the General Circulation in the Tropics,” Vestn. Mosk. Gos. Univ., Fiz. Astron., No. 3, 71–77 (2006).

  80. G. I. Gorchakov and K. A. Shukurov, “Fluctuations in the Submicron-Aerosol Concentration under Convective Conditions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 85–97 (2003) [Izv., Atmos. Ocean. Phys. 39, 75–86 (2003)].

    Google Scholar 

  81. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Arid Aerosol Transport by Vortices,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 596–608 (2003) [Izv., Atmos. Ocean. Phys. 39, 536–547 (2003)].

    Google Scholar 

  82. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Wind Effect on Aerosol Transport from the Underlying Surface,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 759–775 (2004) [Izv., Atmos. Ocean. Phys. 40, 679–694 (2004)].

    Google Scholar 

  83. S. M. Sakerin, D. M. Kabanov, A. P. Rostov, et al., “System of Network Monitoring of Radiative Active Atmospheric Constituents: Part I. Solar Photometers,” Opt. Atmos. Okeana 17, 354–360 (2004).

    Google Scholar 

  84. N. Ulyumdzhieva, N. Chubarova, and A. Smirnov, “Aerosol Characteristics of the Atmosphere in Moscow from the Data of a CIMEL Solar Photometer,” Meteorol. Gidrol., No. 1, 4857 (2005).

  85. N. N. Ulyumdzhieva, N. E. Chubarova, and B. Kholben, “Optical Properties of Atmospheric Aerosol in the 2002 Period of Forest Fires in the Suburbs of Moscow,” Meteorol. Gidrol., No. 3, 45–52 (2005).

  86. S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, et al., “Results of Monitoring Atmospheric Aerosol in Asian Russia under the AEROSIVNET Program in 2004,” Opt. Atmos. Okeana 18, 968–975 (2005).

    Google Scholar 

  87. E. L. Makhotkina, I. N. Plakhina, and A. B. Lukin, “Some Features in Atmospheric-Turbidity Variations in Russia in the Last Quarter of the 20th Century,” Meteorol. Gidrol., No. 1, 28–36 (2005).

  88. E. V. Gorbarenko, “Aerosol Atmospheric Turbidity in Moscow at the End of the 20th Century,” Meteorol. Gidrol., No. 7, 13–18 (2003).

  89. E. V. Gorbarenko, A. E. Erokhina, and A. B. Lukin, “Multiyear Variations in the Aerosol Optical Thickness of the Atmosphere in Russia,” Meteorol. Gidrol., No. 7, 41–48 (2006).

    Google Scholar 

  90. V. Vitale and V. F. Radionov, “Aerosol Optical Depth in Polar Regions” in Proceedings of WMO/GAV Experts Workshop on a Global Surface-based Network for Long Term Observations of Column Aerosol Optical Properties, Davos, Switzerland, March 2004 (WMO/GAV, 2005), no. 162, p. 75.

  91. V. F. Radionov, “Temporal Variability of the Aerosol Optical Characteristics of the Atmosphere in the Russian Arctic” in Proceedings of WMO/GAV Experts Workshop on a Global Surface-based Network for Long Term Observations of Column Aerosol Optical Properties, Davos, Switzerland, March 2004 (WMO/GAV, 2005), no. 162, p. 82.

  92. E. V. Makienko, D. M. Kabanov, R. F. Rakhimov, and S. M. Sakerin, “Microphysical Features of the Aerosol Component in Various Atlantic Regions,” Opt. Atmos. Okeana 17, 437–443 (2004).

    Google Scholar 

  93. E. V. Makienko, D. M. Kabanov, R. F. Rakhimov, and S. M. Sakerin, “Analysis of the Factors Affecting the Formation of the Particle Size Spectrum and Aerosol Optical Thickness at Temperate Latitudes in the North Atlantic,” Opt. Atmos. Okeana 18, 557–565 (2005).

    Google Scholar 

  94. S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, and V. V. Pol’kin, “On the Longitudinal Dependence and Relationships of Aerosol Characteristics in the Atmosphere of the South Atlantic,” Opt. Atmos. Okeana 19, 611–621 (2006).

    Google Scholar 

  95. S. M. Sakerin and D. M. Kabanov, “Investigation of the Aerosol Optical Depth in the Atmosphere of Southern Atlantic in the 19th Cruise of RV Akademik Sergei Vavilov,” Proc. SPIE-Int. Soc. Opt. Eng. 6160, 2 (2006).

    Google Scholar 

  96. V. V. Pol’kin, L. P. Golobokova, V. S. Kozlov, et al., “Assessment of the Relationship between the Microphysical and Chemical Compositions for the White Sea Near-Water Aerosol,” Opt. Atmos. Okeana 17, 377–385 (2004).

    Google Scholar 

  97. I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of Aerosol on the Clear-Sky Radiation Regime as Derived from Zvenigorod Aerosol-Cloud-Radiation Experiments,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41), 496–510 (2005) [Izv., Atmos. Ocean. Phys. 41, 448–460 (2005)].

    Google Scholar 

  98. I. A. Gorchakova, P. P. Anikin, and E. V. Romashova, “Estimations of the Aerosol Radiation Forcing from Measurements at the IFA RAN Zvenigorod Scientific Station in March 2004,” Opt. Atmos. Okeana 19, 481–483 (2006).

    Google Scholar 

  99. T. A. Tarasova, I. A. Gorchakova, M. A. Sviridenkov, et al., “Estimation of the Radiative Forcing of Smoke Aerosol from Radiation Measurements at the Zvenigorod Scientific Station in the Summer of 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 514–524 (2004) [Izv., Atmos. Ocean. Phys. 40, 454–463 (2004)].

    Google Scholar 

  100. I. I. Mokhov, “I.A. Gorchakova. Radiation and Temperature Effects of the 2002 Summer Fires in the Moscow Region,” Dokl. Akad. Nauk 400, 528–531 (2005).

    Google Scholar 

  101. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, et al., “Study of the Composition of a Smoky Atmosphere in the Moscow Region,” Dokl. Akad. Nauk 390, 251–254 (2003).

    Google Scholar 

  102. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, et al., “Studies of the Smoky Atmosphere Composition over Moscow during Peatbog Fires in the Summer-Fall Season of 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 370–384 (2004) [Izv., Atmos. Ocean. Phys. 40, 323–336 (2004)].

    Google Scholar 

  103. N. Chubarova, A. Rublev, and B. Holben, “The Effects of Forest Fires on Aerosol Properties and Solar Irradiance Attenuation over Central Russia,” Opt. Pura Aplic. 37, 3321–3326 (2004).

    Google Scholar 

  104. M. A. Sviridenkov, A. S. Emilenko, V. M. Kopeikin, and Van Gen Chen, “Transformation of Aerosol Optical Properties and Microstructure during a Smog Event in Beijing,” Opt. Atmos. Okeana 19, 522–525 (2006).

    Google Scholar 

  105. R. F. Rakhimov, D. M. Kabanov, and E. V. Makienko, “Variations in the Disperse Composition of Haze under Increasing Atmospheric Turbidity as Inferred from AOT Measurements in Tomsk,” Opt. Atmos. Okeana 19, 841–850 (2006).

    Google Scholar 

  106. N. E. Chubarova, “Effect of Aerosol and Atmospheric Gases on Ultraviolet Radiation under Various Optical Conditions Including the 2002 Haze Conditions,” Dokl. Akad. Nauk 394, 105–111 (2004).

    Google Scholar 

  107. N. E. Chubarova, “On the Role of Tropospheric Gases in UV Radiation Absorption,” Dokl. Akad. Nauk 407, 294–297 (2006).

    Google Scholar 

  108. G. I. Gorchakov, E. G. Semutnikova, E. V. Zotkin, et al., “Variations in Gaseous Pollutants in the Air Basin of Moscow,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 176–190 (2006) [Izv., Atmos. Ocean. Phys. 42, 156–170 (2006)].

    Google Scholar 

  109. I. N. Kuznetsova, M. N. Khaikin, and E. N. Kadygrov, “Urban Effect on the Atmospheric Boundaryy Layer Temperature from Microwave Measurements in Moscow and Its Suburbs,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 678–688 (2004) [Izv., Atmos. Ocean. Phys. 40, 607–616 (2004)].

    Google Scholar 

  110. E. Kadygrov, M. Khaikine, I. Kuznetsova, and E. Miller, “Investigation of Urban Heat Island on the Basis of Stationary and Mobile Microwave Systems for Remote Measurements of Atmospheric Temperature Profiles,” Proc. SPIE-Int. Soc. Opt. Eng. 5832, 503–513 (2005).

    Google Scholar 

  111. M. N. Khaikine, I. N. Kuznetsova, E. N. Kadygrov, and E. A. Miller, “Investigation of Thermal-Spatial Parameters of an Urban Heat Island on the Basis of Passive Microwave Remote Sensing,” Theor. Appl. Clim. 84, 161–169 (2006).

    Google Scholar 

  112. E. N. Kadygrov, A. V. Koldaev, E. A. Miller, et al., Study of an Urban Heat Island in the City of Nizhni Novgorod with a Mobile Remote Atmospheric-Temperature Profiler,” Meteorol. Gidrol., No. 1, 54–67 (2007).

    Google Scholar 

  113. M. N. Khaikin, E. N. Kadygrov, and I. N. Kuznetsova, “Influence of a High Aerosol Concentration on the Thermal Structure of the Atmospheric Boundary Layer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 778–784 (2006) [Izv., Atmos. Ocean. Phys. 42, 715–721 (2006)].

    Google Scholar 

  114. M. W. Rotach, V. Roland, E. Kadygrov, et al., “Turbulence Structure and Exchange Processes in an Alpine Valley: Riviera Project,” Bull. Am. Meteorol. Soc. 85, 1367–1385 (2004).

    Google Scholar 

  115. I. P. Chunchuzov, S. N. Kulichkov, and A. I. Otrezov, et al., “Acoustic Study of Mesoscale Fluctuations in the Wind Velocity in the Stable Atmospheric Boundary Layer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 761–782 (2005) [Izv., Atmos. Ocean. Phys. 41, 693–712 (2005)].

    Google Scholar 

  116. E. N. Kadygrov, Operational Aspects of Different Ground-Based Remote Sensing Observing Techniques for Vertical Profiling of Temperature, Wind, Humidity and Cloud Structure: A Review (WMO, IOM Report no. 89, WMO/TD no. 1309, Geneva, 2006).

  117. F. V. Kashin, V. N. Aref’ev, Yu. I. Baranov, et al., “Variability of the Methane Content in the Atmospheric Surface Layer and in the Atmospheric Column,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 403–409 (2004) [Izv., Atmos. Ocean. Phys. 40, 356–361 (2004)].

    Google Scholar 

  118. K. N. Visheratin, N. E. Kamenogradskii, F. V. Kashin, et al., “Spectral-Temporal Structure of Variations in the Atmospheric Total Ozone in Central Eurasia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 205–223 (2006) [Izv., Atmos. Ocean. Phys. 42, 184–202 (2006)].

    Google Scholar 

  119. V. N. Aref’ev, F. V. Kashin, V. K. Semenov et al., “Water Vapor in the Atmosphere over the Northern Tien Shan,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 801–813 (2006) [Izv., Atmos. Ocean. Phys. 42, 739–751 (2006)].

    Google Scholar 

  120. M. V. Makarova, Yu. M. Timofeyev, and A. V. Poberovski, “Spectroscopic Study of Atmospheric Methane and Carbon Monoxide Variability near St. Petersburg (Russia),” Proc. SPIE, 5235, 457–464 (2004).

    Google Scholar 

  121. M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Temporal Variability of Total Atmospheric Crbon Monoxide over St. Petersburg,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 355–365 (2004) [Izv., Atmos. Ocean. Phys. 40, 313–322 (2004)].

    Google Scholar 

  122. M. V. Makarova, A. V. Poberovskii, S. V. Yagovkina, et al., “Study of the Formation of the Methane Field in the Atmosphere over Northwestern Russia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 237–249 (2006) [Izv., Atmos. Ocean. Phys. 42, 215–227 (2006)].

    Google Scholar 

  123. V. F. Radionov and E. N. Rusina, “Measurements of the Total Ozone Content over the Central Arctic Basin,” Izv. Akad. Nauk, Fiz. Atm. Okeana 42, 716–720 (2006) [Izv., Atmos. Ocean. Phys. 42, 658–662 (2006)].

    Google Scholar 

  124. O. V. Postylyakov, I. B. Belikov, N. F. Elansky, and A. S. Elohov, “Observations of the Ozone and Nitrogen Dioxide Profiles in the TROICA-4 Experiment,” Adv. Space Res. 37, 2231–2237 (2006).

    Google Scholar 

  125. A. N. Rublev, N. E. Chubarova, A. N. Trotsenko, and G. I. Gorchakov, “Determination of NO2 Column Amounts from AERONET Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 60–74 (2004) [Izv., Atmos. Ocean. Phys. 40, 54–67 (2004)].

    Google Scholar 

  126. A. N. Rublev, N. E. Chubarova, A. N. Trotsenko, and G. I. Gorchakov, “NO2 Detection against the Aerosol Attenuation Background (Answer to the Comment),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 134–138 (2005) [Izv., Atmos. Ocean. Phys. 41, 120–123 (2005)].

    Google Scholar 

  127. I. M. Levin, E. I. Levina, G. D. Gil’bert, and S. E. Stewart, “Optimal Algorithm for Remote Determination of Optically Active Substances in the Ocean with a Multichannel Spectrometer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 693–701 (2005) [Izv., Atmos. Ocean. Phys. 41, 632–640 (2005)].

    Google Scholar 

  128. I. Levin, E. Levina, G. Gilbert, and S. Stewart, “Role of Sensor Noise in Hyperspectral Remote Sensing of Natural Waters: Application to Retrieval of Phytoplankton Pigments,” Remote Sensing Environ. 95, 264–271 (2005).

    Google Scholar 

  129. I. T. Bubukin and K. S. Stankevich, “Millimeter Radiometry of a Temperature Film on the Surface,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 46, 261 (2003).

    Google Scholar 

  130. D. M. Kabanov, F. V. Dorofeev, A. P. Rostov, et al., “Network Solar Photometer: Software Elements and Preliminary Tests,” Proc. SPIE-Int. Soc. Opt. Eng. 5397, 140–145 (2004).

    Google Scholar 

  131. F. S. Zavelevich, Yu. M. Golovin, A. V. Desyatov, et al., “Fourier Spectrometer for Remote Sensing of the Earth’s Atmosphere,” in Proceedings of International Symposium on Atmospheric Radiation “MSAR-2006” (St. Petersburg, 2006), p. 19.

  132. A. S. Beshmenev, Ya. A. Virolainen, B. V. Dement’ev, et al., “Gas-Correlation IR Radiometer for Remote Measurements of the Methane Content in the Atmosphere,” in Optical Spectroscopy and Frequency Standards, Ed. by E. A. Vinogradov and A. N. Sinitsa (IOA SO RAN, Tomsk, 2004) [in Russian].

    Google Scholar 

  133. Ya. A. Virolainen and A. V. Polyakov, “Consideration for Radiation Scattering in Gas-Correlation Measurements of the Total Methane Content,” Issled. Zemli Kosmosa, No. 4, 39 (2004).

  134. V. V. Asmus, V. N. Dyaduchenko, O. E. Milekhin, and A. B. Uspensky, “Remote Sensing Products and Applications: Roshydromet Program,” in Proceedings of the 2005 Eumetsat Meteorological Satellite Conference (Dubrovnik, Croatia, 2005), pp. 16–24.

    Google Scholar 

  135. A. B. Uspenskii, S. V. Romanov, and A. N. Trotsenko, “Application of the Method of Principal Components to Analyses of High-Resolution IR Spectra Measured from Satellites,” Issled. Zemli Kosmosa, No. 3, 26–33 (2003).

  136. A. B. Uspenskii, A. N. Trotsenko, and A. N. Rublev, “Problems and Prospects of Analyses and Uses of the Data of IR Satellite Sounders of High Spectral Resolution,” Issled. Zemli Kosmosa, No. 5, 18–33 (2005).

  137. I. V. Chernyi, G. M. Chernyavskii, A. B. Uspenskii, et al., “Microwave Radiometer of the MTVZA Satellite “Meteor-3M” no. 1: Preliminary Results of Aircraft Tests,” Issled. Zemli Kosmosa, No. 6, 1–15 (2003).

  138. V. I. Solov’ev, A. B. Uspenskii, and A. V. Kukharskii, “Experience of Regional Temperature-Humidity Atmospheric Sounding from the NOAA Satellite Data,” Meteorol. Gidrol., No. 3, 38–46 (2003).

  139. M. V. Bukharov, T. Kh. Geokhlanyan, and Yu. B. Khapin, “Integral Humidity Parameters of the Atmosphere over Oceans from the Information of an MIVZA Microwave Radiometer,” Meteorol. Gidrol., No. 12, 46–55 (2003).

  140. A. M. Volkov, M. V. Bukharov, V. V. Ozerkina, et al., “Retrieval of Atmospheric Parameters by a Regression Method from Microwave Measurements from Space,” Issled. Zemli Kosmosa, No. 6, 25–34 (2003).

  141. M. V. Bukharov, “Diagnosis of Hydrometeorological Variables from Satellite Measurements of the Earth’s Outgoing Thermal Radiation in the Microwave and IR Regions,” Meteorol. Gidrol., No. 1, 96–104 (2005).

  142. E. V. Volkova, “Determination of the Cloud Type from the Data of AVHRR NOAA Satellite Measurements for European Russia in the Warm Season,” Tr. NITs “Planeta,” No. 1 (46), 22–41 (2005).

  143. A. N. Rublev, A. B. Uspenskii, A. N. Trotsenko, et al., “Detection and Estimation of the Cloud Amount from the Data of IR Sounders of High Spectral Resolution,” Issled. Zemli Kosmosa, No. 3, 43–51 (2004).

  144. M. V. Bukharov and V. I. Solov’ev, “Monitoring Precipitation in the Fall Season from NOAA Satellite Measurements of the Earth’s Outgoing Thermal Radiation,” Issled. Zemli Kosmosa, No. 5, 51–57 (2004).

  145. E. K. Kramchaninova and A. F. Nerushev, “Software for Studying Disturbances Caused in Geophysical Fields by Intense Atmospheric Vortices,” Tr. NITs “Planeta,” No. 1 (46), 120–128 (2005).

  146. A. F. Nerushev and E. K. Kramchaninova, “Determination of Wind Speed near a Sea Surface in Intensive Atmospheric Vortices,” in Proceedings of the 2005 Eumetsat Winds Workshop (Darmstadt, 2005), pp. 369–376.

  147. A. Nerushev, E. Kramchaninova, and V. Solovjev, “Studies of Regions with Intense Turbulent Motions Based on MSG Data,” in Proceedings of the 2006 Eumetsat Winds Workshop (Darmstadt, 2005), pp. 273–279.

  148. M. V. Bukharov and A. A. Alekseeva, “Diagnosis of Possible Showers and Hail from NOAA Satellite Measurements of the Earth’s Outgoing Thermal Radiation,” Meteorol. Gidrol., No. 9, 21–30 (2004).

    Google Scholar 

  149. A. A. Alekseeva and M. V. Bukharov, “Satellite Diagnosis of Thunderstorms from the Simultaneous Data of Microwave and IR Radiometers,” Meteorol. Gidrol., No. 6, 30–39 (2005).

  150. A. A. Alekseeva, M. V. Bukharov, V. M. Losev, and V. I. Solov’ev, “Diagnosis of Precipitation and Thunderstorms from Geostationary Satellite Measurements of the Outgoing Thermal Radiation of Clouds z osadkov i groz po izmereniyam ukhodyashchego teplovogo izlucheniya oblachnosti s geostatsionarnykh sputnikov,” Meteorol. Gidrol., No. 8, 3342 (2006).

  151. S. V. Romanov and A. B. Uspenskii, “Numerical Simulation of Remote Measurements of the Vertical Distribution of Ozone in the Atmosphere from Data of Satellite IR Sounders of High Spectral Resolution,” Tr. NITs “Planeta”, No. 1 (46), 104–119 (2005).

  152. A. B. Uspenskii, S. V. Romanov, and A. N. Trotsenko, “Simulation of Remote Measurements of the Vertical Distribution of Ozone in the Atmosphere from the Data of Satellite IR Sounders of High Spectral Resolution,” Issled. Zemli Kosmosa, No. 1, 4957 (2003).

  153. A. B. Uspensky, A. V. Kukharsky, A. N. Trotsenko, et al., “Progress and Promise for Observing Tropospheric Gas Variations with Satellite Advanced Sounders,” in Proceedings of the 2005 Eumetsat Meteorological Satellite Conference (Dubrovnik, Croatia, 2005), pp. 507–515.

    Google Scholar 

  154. A. B. Uspenskii, A. V. Kukharskii, and A. N. Rublev, “Detection of Atmospheric SO2 Variations from the Data of Satellite IR Sounding of High Spectral Resolution,” Issled. Zemli Kosmosa, No. 4, 42–51 (2006).

  155. A. N. Rublev and A. B. Uspenskii, “Estimation of the Concentration of Carbon Dioxide in the Troposphere from the Data of Sciamachy Spectrometer Measurements under Cloudy Conditions,” Issled. Zemli Kosmosa, No. 6, 31–41 (2006).

  156. A. N. Rublev, M. Bukhvits, and T. B. Zhuravleva, “Comparison of Satellite and Aircraft SO2 Concentration Measurements over Western Siberia,” Opt. Atmos. Okeana 19, 322–327 (2006).

    Google Scholar 

  157. V. A. Golovko, L. A. Pakhomov, and A. B. Uspenskii, “Global Monitoring of the Components of the Earth’s Radiation Balance from Meteor-3 and Resurs-01 Satellites,” Meteorol. Gidrol., No. 12, 56–73 (2003).

  158. A. V. Polyakov and Yu. M. Timofeev, “Potential Accuracies of Retrieving the Vertical Profiles of Atmospheric Parameters (Satellite-Based Transmittance Method): 1. Ozone and Nitrogen Dioxide Contents; 2. Spectral Coefficient of Aerosol Extinction,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 254–261; 262–268 (2003) [Izv., Atmos. Ocean. Phys. 39, 227–233; 234–239 (2003)].

    Google Scholar 

  159. A. V. Polyakov, Yu. M. Timofeyev, V. S. Kostsov, et al., “Trace Gas and Aerosol Sounding of the Atmosphere in Sun Occultation Experiment with SAGE III Device,” Proc. SPIE-Int. Soc. Opt. Eng. 5235, 397–407 (2004).

    Google Scholar 

  160. A. V. Polyakov, Y. M. Timofeyev, D. V. Ionov, et al., “Retrieval of Ozone and Nitrogen Dioxide Concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III) Measurements Using a New Algorithm,” J. Geophys. Res. 110, doi: 10.1029/2004JD005060D06303 (2005).

  161. A. V. Polyakov, Yu. M. Timofeev, D. V. Ionov, et al., “New Interpretation of Transmittance Measurements by the SAGE III Satellite Spectrometer” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 410–422 (2005) [Izv., Atmos. Ocean. Phys. 41, 371–382 (2005)].

    Google Scholar 

  162. A. M. Chaika, Yu. M. Timofeev, A. V. Polyakov, and V. S. Kostsov, “Analysis of a Satellite Method for Determining the Microstructure of Stratospheric Aerosol,” Issled. Zemli Kosmosa, No. 3, 5561 (2006).

  163. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Analysis of Solutions to the Inverse Problem on the Retrieval of the Microstructure of Stratospheric Aerosol from Satellite Measurements,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 816–829 (2006) [Izv., Atmos. Ocean. Phys. 42, 752–764 (2006)].

    Google Scholar 

  164. Yu. M. Timofeyev, A. V. Polyakov, H. M. Steele, and M. J. Newchurch, “Optimal Eigenanalysis for the Treatment of Aerosols in the Retrieval of Atmospheric Composition from Transmission Measurements,” Appl. Opt. 42, 2635–2646 (2003).

    Google Scholar 

  165. Yu. M. Timofeyev, A. V. Polyakov, Ya. A. Virolainen, et al., “Statistical Models of Aerosols and Polar Stratospheric Clouds (PSC) for Remote Sensing,” Proc. SPIE-Int. Soc. Opt. Eng. 5235, 347–356 (2004).

    Google Scholar 

  166. Ya. A. Virolainen, A. V. Polyakov, and Yu. M. Timofeev, “Statistical Models for Tropospheric Aerosol,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 247–258 (2004) [Izv., Atmos. Ocean. Phys. 40, 216–226 (2004)].

    Google Scholar 

  167. Ya. A. Virolainen, A. V. Polyakov, Yu. M. Timofeev, et al., “Modeling Polar Stratospheric Clouds: I. Microphysical Characteristics; II. Statistics of the Spectral Extinction Coefficient and Possibilities for PSO Remote Sensing,” Opt. Atmos. Okeana 18, 264–269; 386–591 (2005).

    Google Scholar 

  168. V. S. Kostsov and Yu. M. Timofeyev, “Mesospheric Carbon Dioxide Content As Determined from the CRISTA-1 Experimental Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 359–370 (2003) [Izv., Atmos. Ocean. Phys. 39, 322–332 (2003)].

    Google Scholar 

  169. V. S. Kostsov and Yu. M. Timofeev, “Mesospheric Ozone from the CRISTA-1 Satellite Experimental Data: 1. Method of Profile Determination and Its Accuracy; 2. Spatial Distributions and Daily Variations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 201–214; 215–226 (2005) [Izv., Atmos. Ocean. Phys. 41, 178–190; 191–202 (2005)].

    Google Scholar 

  170. V. S. Kostsov and Yu. M. Timofeev, “Mesospheric Temperature Inversions from CRISTA-1 Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 814–823 (2005) [Izv., Atmos. Ocean. Phys. 41, 741–749 (2005)].

    Google Scholar 

  171. V. S. Kostsov, Yu. M. Timofeyev, and R. O. Manuilova, “Global Distributions of Temperature, Carbon Dioxide, Ozone, and Non-LTE Parameters in Mesosphere and Lower Thermosphere (CRISTA-1 Experiment),” Proc. SPIE-Int. Soc. Opt. Eng. 5235, 208–219 (2004).

    Google Scholar 

  172. A. V. Rakitin and V. S. Kostsov, “Ranges of Validity of the Approximation of a Spherically Homogeneous Atmosphere in the Problem of Satellite IR Remote Sensing of the Mesosphere on Slant Paths,” Issled. Zemli Kosmosa, No. 5, 1017 (2005).

  173. V. S. Kostsov and A. V. Rakitin, “Errors of the Approximation of a Spherically Homogeneous Atmosphere in the Problem of Calculating the Outgoing Nonequilibrium Radiation in the 9.6-μm Ozone Band on Slant Paths,” Issled. Zemli Kosmosa, No. 5, 38–48 (2006).

  174. D. V. Ionov, T. A. Egorova, V. A. Zubov, and E. V. Rozanov, “Global Fields of the Total Ozone and Nitrogen Dioxide Contents Retrieved from Satellite Measurements and a Three-Dimensional Simulation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 620–630 (2003) [Izv., Atmos. Ocean. Phys. 39, 558–567 (2003)].

    Google Scholar 

  175. D. V. Ionov, V. P. Sinyakov, and V. K. Semenov, “Validation of GOME (ERS-2) NO2 Vertical Column Data with Ground-Based Measurements at Issyk-Kul (Kyrgyzstan),” Adv. Space Res. 37, 2254–2260 (2006).

    Google Scholar 

  176. V. A. Yankovskii and R. O. Manuilova, “New Self-Consistent Model of O2(a 1Δg,ν) and O2(b 1Σ +g , ν) Diurnal Emissions in the Middle Atmosphere: Retrieval of the Vertical profile of Ozone from the Measured Profiles of Intensity of These Emissions,” Opt. Atmos. Okeana 16, 582–586 (2003).

    Google Scholar 

  177. V. A. Yankovskii and V. A. Kuleshova, “Ozone Photodissociation in the Hartley Band: Analytic Description of O2(a 1Δg,ν = 0−3) Quantum Yields Depending on the Wavelength,” Opt. Atmos. Okeana 19, 576–580 (2006).

    Google Scholar 

  178. V. A. Yankovsky, R. O. Manuilova, and V. A. Kuleshova, “Heating of the Middle Atmosphere as a Result of Quenching of the Products of O2 and O3 Photodissociation,” Proc. SPIE-Int. Soc. Opt. Eng. 5743, 34–40 (2004).

    Google Scholar 

  179. V. A. Yankovsky and R. O. Manuilova, “Model of Daytime Emissions of Electronically-Vibrationally Excited Products of O3 and O2 Photolysis: Application to Ozone Retrieval,” Ann. Geophys. 24, 2823–2839 (2006).

    Google Scholar 

  180. K. G. Gribanov, V. I. Zakharov, and A. Yu. Toptygin, “Retrieval of Temperature and Humidity Profiles from the IR Spectra of the Earth’s Atmosphere on the Basis of a Singular Expansion of Covariance Matrices,” Opt. Atmos. Okeana 16, 576–581 (2003).

    Google Scholar 

  181. K. G. Gribanov and V. I. Zakharov, “Neural Network Solution for Temperature Profile Retrieval from Infrared Spectra with High Spectral Resolution,” Atm. Sci. Lett. 5(14), 111 (2004).

    Google Scholar 

  182. K. G. Gribanov, R. Imasu, G. A. Schmidt, et al., “Neural Network Retrieval of Deuterium to Hydrogen Ratio in Atmosphere from IMG/ADEOS Spectra,” Proc. SPIE-Int. Soc. Opt. Eng. 5655, 515–521 (2005).

    Google Scholar 

  183. K. G. Gribanov, A. Yu. Toptygin, and V. I. Zakharov, “Application of Multilayer Perceptron to High-Resolution Infrared Measurement Retrieval,” Proc. SPIE-Int. Soc. Opt. Eng. 6580 (2006).

  184. V. I. Zakharov, R. Imasu, K. G. Gribanov, et al., “Latitudinal Distribution of the Deuterium to Hydrogen Ratio in the Atmospheric Water Vapor Retrieved from IMG/ADEOS Data,” Geophys. Res. Lett. 31(12), 1–4 (2004).

    Google Scholar 

  185. A. Yu. Toptygin, K. G. Gribanov, R. Imasu, et al., “Latitudinal Variations in the HDO/H2O Vertical Profiles and Total Content in the Atmosphere over the Ocean as Inferred from the IMG/ADEOS Data,” Opt. Atmos. Okeana 19, 875–879 (2006).

    Google Scholar 

  186. A. Yu. Toptygin, K. G. Gribanov, V. I. Zakharov, et al., “Method and Results of Retrieval of HDO/H2O in Atmosphere from IMG/ADEOS and FTIR Data,” Proc. SPIE-Int. Soc. Opt. Eng. 6580 (2006).

  187. A. Yu. Toptygin, K. G. Gribanov, R. Imasu, et al., “Seasonal Methane Content in Atmosphere of the Permafrost Boundary Zone in Western Siberia Determined from IMG/ADEOS and AIRS/AQUA Data,” Proc. SPIE-Int. Soc. Opt. Eng. 5655, 508–514 (2005).

    Google Scholar 

  188. A. S. Gurvich and V. Kan, “Structure of Air Density Irregularities in the Stratosphere from Spacecraft Observations of Stellar Scintillation: 1. Three-Dimensional Spectrum Model and Recovery of Its Parameters; 2. Characteristic Scales, Structure Characteristics, and Kinetic Energy Dissipation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 335–346; 347–358 (2003) [Izv., Atmos. Ocean. Phys. 39, 300–310; 311–321 (2003)].

    Google Scholar 

  189. A. S. Gurvich and I. P. Chunchuzov, “Parameters of the Fine Density Structure in the Stratosphere Obtained from Spacecraft Observations of Stellar Scintillations,” J. Geophys. Res. 108, D54166, doi: 10.1029/2002JD0022281 (2003).

  190. A. S. Gurvich and I. P. Chunchuzov, “Estimates of Characteristics Scales in the Spectrum of Internal Waves in the Stratosphere Obtained from Space Observations of Stellar Scintillations,” J. Geophys. Res. 110, doi: 10.1029/2004JD005199, D03114 (2005).

  191. A. S. Gurvich and I. G. Yakushkin, “Spacecraft Observations of Quasi-Periodic Structures in the Stratosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 737–746 (2004) [Izv., Atmos. Ocean. Physics 40, 659–667 (2004)].

    Google Scholar 

  192. V. V. Vorob’ev, D. A. Marakasov, and O. V. Fedorova, “Spectra of Strong Scintillation Caused by Large-Scale Anisotropic Stratospheric Irregularities during Stellar Observations from Satellites,” Opt. Atmos. Okeana 19, 1004–1012 (2006).

    Google Scholar 

  193. A. S. Gurvich, F. Dalaudier, and V. F. Sofieva, “Study of Stratospheric Air Density Irregularities Based on Two-Wavelength Observation of Stellar Scintillation by Global Ozone Monitoring by Occultation of Stars (GOMOS) on Envisat,” J. Geophys. Res. 110, doi: 10.1029/2004JD005536, D11110 (2005).

  194. G. Beyerle, M. E. Gorbunov, and C. O. Ao, “Simulation Studies of GPS Radio Occultation Measurements,” Radio Sci. 38, doi: 10.1029/2002RS002800, 1–16 (2003).

    Google Scholar 

  195. M. E. Gorbunov, “An Asymptotic Method of Modeling Radio Occultations,” J. Atmos. Solar-Terr. Phys. 65, 1361–1367 (2003).

    Google Scholar 

  196. M. E. Gorbunov, H.-H. Benzon, A. S. Jensen, et al., “Comparative Analysis of Radio Occultation Processing Approaches Based on Fourier Integral Operators,” Radio Sci. 39, doi: 10.1029/2003RS002916, RS6004 (2004).

  197. M. E. Gorbunov, K. B. Lauritsen, A. Rodin, et al., “Analysis of the CHAMP Experimental Data on Radio Occultation Sounding of the Earth’s Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 798–813 (2005) [Izv., Atmos. Ocean. Phys. 41, 726–740 (2005)].

    Google Scholar 

  198. O. M. Johannessen, K. S. Khvorostovsky, M. W. Miles, and L. P. Bobylev, “Recent Ice-Sheet Growth in the Interior of Greenland,” Science 310(5750), 1013–1016 (2005).

    Google Scholar 

  199. L. P. Bobylev, K. Ya. Kondratyev, and O. M. Johannessen, Arctic Environment Variability in the Context of Global Change (Springer-Praxis, Chichester, 2003).

    Google Scholar 

  200. O. M. Johannessen, V. Yu. Alexandrov, I. Ye. Frolov, et al., Remote Sensing of Sea Ice in the Northern Sea Route. Studies and Applications (Springer-Praxis, Chichester, 2006).

    Google Scholar 

  201. D. V. Pozdnyakov, A. A. Korosov, L. Kh. Petterson, and V. V. Ionov, New Operational Algorithm for Retrieving the Quality of Natural Waters from the Data of Satellite Sounding,” Issled. Zemli Kosmosa, No. 4, 17–29 (2005).

  202. D. V. Pozdnyakov and H. Grassl, Colour of Inland and Coastal Waters: A Methodology for Its Interpretation (Springer-Praxis, Chichester, 2003).

    Google Scholar 

  203. D. V. Pozdnyakov, A. A. Korosov, H. Grassl, and L. H. Pettersson, “An Advanced Algorithm for Operational Retrieval of Water Quality from Satellite Data in the Visible Region,” Int. J. Remote Sensing 26, 2669–2688 (2005).

    Google Scholar 

  204. D. V. Pozdnyakov, L. H. Pettersson, O. M. Johannessen, et al., “SeaWiFS Maps Water Quality Parameters of the White Sea,” Int. J. Remote Sensing 24(21), 3–5 (2003).

    Google Scholar 

  205. D. V. Pozdnyakov, A. A. Korosov, L. H. Pettersson, and O. M. Johannessen, “MODIS Evidences the River Runoff Impact on the Kara Sea Trophy,” Int. J. Remote Sensing 26(17), 3641–3648 (2005).

    Google Scholar 

  206. N. N. Filatov, D. V. Pozdnyakov, O. M. Johannessen, et al., White Sea: Its Marine Environment and Ecosystem Dynamics Influenced by Global Change (Springer-Praxis, Chichester, 2005).

    Google Scholar 

  207. A. Korosov, D. V. Pozdnyakov, N. N. Filatov, et al., “Studies of the Spectrum of Seasonal and Spatial Variability of Some Ecoparameters in Lake Ladoga from Satellite Data,” Issled. Zemli Kosmosa, No. 5, 110 (2006).

  208. D. V. Pozdnyakov, R. A. Shuchman, A. A. Korosov, and C. Hatt, “Operational Algorithm for the Retrieval of Water Quality in the Great Lakes,” Remote Sensing Environ. 97, 352–370 (2005).

    Google Scholar 

  209. R. Shuchman, A. Korosov, C. Hatt, et al., “Verification and Application of Bio-Optical Algorithm for Lake Michigan Using SeaWiFS: 7-Year Inter-Annual Analysis,” J. Great Lakes Res. 32, 258–279 (2006).

    Google Scholar 

  210. J. A. Johannessen, V. N. Kudryavtsev, D. B. Akimov, et al., “On Radar Imaging of Current Features. Part 2: Mesoscale Eddy and Current Front Detection,” J. Geophys. Res. 110, doi:10.1029/2004JC002802, C07017 (2005).

    Google Scholar 

  211. A. V. Bogdanov, S. Sandven, O. M. Johannessen, et al., “Multisensor Approach to Automated Classification of Sea Ice Image Data,” IEEE Trans. Geosci. Remote Sensing 43, 1648–1664 (2005).

    Google Scholar 

  212. V. N. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, “A Semi-Empirical Model of the Normalized Radar Cross-Section of the Sea Surface. Part 1: The Background Model; Part 2: Radar Modulation Transfer Function,” J. Geophys. Res., doi: 10.1029/2001JC0011003, 8054; doi: 10.1029/2001JC0011004, 8055 (2003).

  213. V. N. Kudryavtsev, D. B. Akimov, J. A. Johannessen, and B. Chapron, “On Radar Imaging of Current Features. Part 1: Model and Comparison with Observations,” J. Geophys. Res. 110, doi: 10.1029/2004JC002505, C07016 (2005).

  214. V. N. Kudryavtsev, D. B. Akimov, and J. A. Johannessen, “Manifestation of Mesoscale Variability of the Sea Kosmosa, No. 2, 27–46 (2003).

  215. V. N. Kudryavtsev and J. A. Johannessen, “Effect of Wave Breaking on Short Wind Waves,” Geophys. Res. Lett. 31, doi: 10.1029/2004GL020619, L20310 (2004).

  216. V. N. Kudryavtsev, “On the Effect of Sea Drops on the Atmospheric Boundary Layer,” J. Geophys. Res. 111, doi: 10.1029/2005JC002970, C07020 (2006).

  217. O. M. Johannessen, L. Bengtsson, M. W. Miles, et al., “Arctic Climate Change: Observed and Modeled Temperature and Sea-Ice Variability,” Tellus A 56, 328–341 (2004).

    Google Scholar 

  218. I. O. Pokrovskii and O. M. Pokrovskii, “Determination of Albedo of the Soil-Vegetation System from the Data of Multiangular Remote Measurements of the Reflected Solar Radiation,” Issled. Zemli Kosmosa, No. 5, 6–19 (2003).

  219. I. O. Pokrovskii and O. M. Pokrovskii, “Multiangular Remote Measurements of the Soil-Vegetation System: Optimal Conditions for the Experiment,” Issled. Zemli Kosmosa, No. 1, 1437 (2007).

  220. O. M. Pokrovsky and J. L. Roujean, “Land Surface Albedo Retrieval via Kernel-Based BRDF Modeling: I. Statistical Inversion Method and Model Comparison; II. An Optimal Design Scheme for the Angular Sampling,” Remote Sensing Environ. 84, 100–119; 120–142 (2003).

    Google Scholar 

  221. I. O. Pokrovsky, O. M. Pokrovsky, and J.-L. Roujean, “Development of an Operational Procedure to Estimate Surface Albedo from the SEVIRI/MSG Observing System by Using POLDER BRDF Measurements: I. Data Quality Control and Accumulation of Information Corresponding to the IGBP Land Cover Classes; II. Comparison of Several Inversion Techniques and Uncertainty in Albedo Estimates,” Remote Sensing Environ. 87, 198–214; 215–242 (2003).

    Google Scholar 

  222. M. D. Tsyrulnikov, P. I. Svirenko, and R. B. Zaripov, “Development of a 3-D Spatial ARMA-Filters Based Analysis Scheme,” in Research Activities in Atmospheric and Oceanic Modelling (WMO Report no. 34, 2006), pp. 1.39–1.40.

  223. E. L. Muzylev, A. B. Uspenskii, E. V. Volkova, and Z. P. Startseva, “Using Satellite Data on the Characteristics of the Underlying Surface in Modeling the Vertical Heat and Moisture Transport for River Watersheds,” Issled. Zemli Kosmosa, No. 4, 24–36 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Timofeev.

Additional information

Original Russian Text © Yu.M. Timofeev, E.M. Shul’gina, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 2, pp. 193–208.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeev, Y.M., Shul’gina, E.M. Russian studies of atmospheric radiation in 2003–2006. Izv. Atmos. Ocean. Phys. 45, 182–197 (2009). https://doi.org/10.1134/S0001433809020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809020042

Keywords

Navigation