Skip to main content
Log in

Russian Investigations in the Field of Atmospheric Radiation in 2015–2018

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A short survey prepared by the Russian Commission on Atmospheric Radiation contains the most significant results of works in the field of atmospheric-radiation studies performed in 2015–2018. It is part of the Russian National Report on Meteorology and Atmospheric Sciences prepared for the International Association on Meteorology and Atmospheric Sciences (IAMAS). During this period, the Russian Commission on Atmospheric Radiation, jointly with concerned departments and organizations, ran two International Symposiums of Atmospheric Radiation and Dynamics (ISARD-2015, ISARD-2017). At the conferences, central problems in modern atmosphere physics were discussed: radiative transfer and atmospheric optics; greenhouse gases, clouds, and aerosols; remote methods of measurements; and new measurement data. This survey presents five directions covering the whole spectrum of investigations performed in the field of atmospheric radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Amosov, “Initial-boundary value problem for the nonstationary radiative transfer equation with diffuse reflection and refraction conditions,” J. Math. Sci. 235 (2), 117–137 (2018).

    Article  Google Scholar 

  2. G. A. Mikhailov, S. M. Prigarin, and S. A. Rozhenko, “Comparative analysis of vector algorithms for statistical modelling of polarized radiative transfer process,” Rus. J. Num. Anal. Math. Model. 33 (4), 253–63 (2018).

    Article  Google Scholar 

  3. A. Y. Ambos and G.A. Mikhailov, “Numerically statistical simulation of the intensity field of the radiation transmitted through a random medium,” Rus. J. Num. Anal. Math. Model. 33 (3), 161–171 (2018).

    Article  Google Scholar 

  4. A. Y. Ambos, G. Lotova, and G. Mikhailov, “New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media,” Rus. J. Num. Anal. Math. Model. 32 (3), 165–172 (2017).

    Google Scholar 

  5. E. N. Aristova, M. N. Gertsev, and A. V. Shilkov, “Lebesgue averaging method in serial somputations of atmospheric radiation,” Comput. Math. Math. Phys. 57 (6), 1022–1035 (2017).

    Article  Google Scholar 

  6. V. L. Kuz’min, “Simulation of polarized optical radiation transport in time and frequency representations,” J. Exp. Theor. Phys. 125, 579–586 (2017).

    Article  Google Scholar 

  7. A. Kim and I. V. Prokhorov, “Theoretical and numerical analysis of an initial-boundary value problem for the radiative transfer equation with Fresnel matching conditions,” Comput. Math. Math. Phys. 58 (5), 735–749 (2018).

    Article  Google Scholar 

  8. I. V. Prokhorov, A. A. Sushchenko, and A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions,” J. Appl. Ind. Math 11 (1), 115–124 (2017).

    Article  Google Scholar 

  9. V. P. Budak, V. S. Zheltov, A. V. Lubenchenko, K. S. Freidlin, and O. V. Shagalov, “A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium,” A-tmos. Oceanic Opt. 30, 70–78 (2016).

    Article  Google Scholar 

  10. S. Korkin, A. Lyapustin, A. Sinyuk, B. Holben, and A. Kokhanovsky, “Vector radiative transfer code SORD: Performance analysis and quick start guide,” J. Quant. Spectrosc. Radiat. Transfer 200, 295–310 (2017).

    Article  Google Scholar 

  11. I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Radiative transfer code for the thermal and near-infrared regions with multiple scattering,” Atmos. Oceanic Opt. 30 (4), 305–310 (2017).

    Article  Google Scholar 

  12. T. V. Russkova and T. B. Zhuravleva, “Optimization of sequential code for simulation of solar radiative transfer in a vertically heterogeneous environment,” Atmos. Oceanic Opt. 30, 169–175 (2017).

    Article  Google Scholar 

  13. A. V. Vasil’ev, I. N. Melnikova, and S. S. Novikov, “The effect of optical parameters of the atmosphere on the characteristics of solar radiation,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (5), 285–299 (2017).

    Article  Google Scholar 

  14. N. Levashova, D. Lukyanenko, Y. Mukhartova, and A. Olchev, “Application of a three-dimensional radiative transfer model to retrieve the species composition of a mixed forest stand from canopy reflected radiation,” Remote Sens. 10 (10), 1661 (2018).

    Article  Google Scholar 

  15. N. Shabanov and J.-P. Gastellu-Etchegorry, “The Stochastic Beer-Lambert-Bouguer Law for discontinuous vegetation canopies,” J. Quant. Spectrosc. Radiat. Transfer 214, 18–32 (2018).

    Article  Google Scholar 

  16. O. V. Shefer, B. A. Kargin, “Radiant energy extinction in the radiative transfer equation for crystal clouds,” Russ. Phys. J. 61 (9), 1568–1579 (2019).

    Article  Google Scholar 

  17. S. Yu. Zin’kov, A. A. Sushchenko, and K. V. Sushchenko, “Analysis of surface and volume scattering effects in the problem of sea floor sounding,” Sib. Elektr. Mat. Izv. 15, 1361–1377 (2018).

    Google Scholar 

  18. V. V. Sterlyadkin, D. S. Sazonov, A. V. Kuz’min, and E. A. Sharkov, “Ground-based radiometric measurements of the effective radiation capacity of the sea surface without absolute calibration,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 15 (2), 29–41 (2018).

    Article  Google Scholar 

  19. O. V. Nikolaeva, “A new algorithm of retrieving the surface albedo by satellite remote sensing data,” A-tmos. Ocean. Opt. 29 (4), 342–347 (2016).

    Article  Google Scholar 

  20. O. V. Nikolaeva, “Studying the accuracy of the algorithm for retrieving the surface albedo with high spatial resolution from a fragment of a satellite image,” A-tmos. Ocean. Opt. 29 (6), 526–532 (2016).

    Article  Google Scholar 

  21. O. V. Nikolaeva, “An algorithm for correcting the effect of light absorption by atmospheric gases on the hyperspectral data of remote sensing,” Komp’yut. Opt. 42 (2) 328–336 (2018).

    Article  Google Scholar 

  22. A. V. Vasil’ev, V. P. Ogibalov, and Yu. M. Timofeev, Numerical Methods of the Radiation Transfer Theory. A Study Guide (SpbGU, Sankt-Peterburg, 2017) [in Russian].

  23. T. K. Sklyadneva, T. M. Rasskazchikova, and V. Arshinova, “Changes in the synoptic regime of Tomsk over the period of 1993–2016,” Proc. SPIE 10833, 108337 (2018).

    Google Scholar 

  24. T. K. Sklyadneva and P. N. Antokhin, “Comparative analysis of total radiation influx to the territory of West Siberia based on reanalysis and ground-based observations data,” in Proc. of the XXII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (IOA SO RAN, Tomsk, 2017), pp. D333–D336. http:// symp.iao.ru/files/symp/aoo/23/D(1).pdf.

  25. T. Zhuravleva and I. Nasrtdinov, “Simulation of bidirectional reflectance in broken clouds: from individual realization to averaging over an ensemble of cloud fields,” Remote Sens. 10 (9), 1342 (2018).

    Article  Google Scholar 

  26. T. B. Zhuravleva, I. M. Nasrtdinov, and T. V. Russkova, “Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field,” Atmos. Oceanic Opt. 30 (1), 103–110 (2017).

    Article  Google Scholar 

  27. T. Russkova and T. Zhuravleva, “Top-of-atmosphere reflectance over homogeneous Lambertian and non-Lambertian surfaces,” Appl. Opt. 57 (22), 6345–6357 (2018).

    Article  Google Scholar 

  28. T. V. Russkova, M. A. Sviridenkov, and T. B. Zhuravleva, “On the effect of stratification of atmospheric optical characteristics on the sky radiance in the solar principal plane,” Atmos. Oceanic Opt. 29 (2), 175–185 (2015).

    Article  Google Scholar 

  29. E. I. Nezval’ and N. E. Chubarova, “Long-term variability of UV radiation in the spectral range of 300–380 nm in Moscow,” Russ. Meteorol. Hydrol. 42 (11), 693–699 (2017).

  30. N. E. Chubarova, A. S. Pastukhova, V. Ya. Galin, and S. P. Smyshlyaev, “Long-term variability of UV irradiance in the Moscow region according to measurement and modeling data,” Izv., Atmos. Ocean Phys. 54 (2), 139–146 (2018).

    Article  Google Scholar 

  31. N. Chubarova, Y. Zhdanova, and Y. Nezval, “A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia,” Atmos. Chem. Phys 16, 11867–11881 (2016).

    Article  Google Scholar 

  32. N. E. Chubarova, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Polyakov, “Estimates of UV indices during the periods of reduced ozone content over Siberia in winter–spring 2016,” Atmos. Oceanic Opt. 32 (2), 177–179 (2019).

    Article  Google Scholar 

  33. O. B. Popovicheva, V. S. Kozlov, G. Engling, E. Diapouli, N. M. Persiantseva, M. A. Timofeev, T. -S. Fan, D. Saraga, and K. Eleftheriadis, “Small-scale study of Siberian biomass burning: I. Smoke microstructure,” Aerosol Air Qual. Res. 14, 1392–1401 (2015).

    Article  Google Scholar 

  34. O. B. Popovicheva, N. M. Persiantseva, M. A. Timofeev, N. K. Shonija, V. S. Kozlov, “Small-scale study of Siberian biomass burning: II. Smoke hygroscopicity,” Aerosol Air Qual. Res. 16 (7), 1558–1568 (2016).

    Article  Google Scholar 

  35. V. S. Kozlov, V. P. Shmargunov, M. V. Panchenko, D. G. Chernov, A. S. Kozlov, and S. B. Malyshkin, “Seasonal variability of the black carbon size distribution in the atmosferic aerosol,” Russ. Phys. J. 58, 1804–1810 (2016).

    Article  Google Scholar 

  36. E. F. Mikhailov, G. N. Mironov, C. Poehlker, X. Chi, M. L. Krueger, M. Shiraiwa, J.-D. Foerster, U. Poeschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, M. O. Andreae, “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino tall tower observatory (ZOTTO), Siberia, during a summer campaign,”Atmos. Chem. Phys. 15, 8847–8869 (2015).

    Article  Google Scholar 

  37. T. I. Ryshkevich, G. N. Mironov, S. Yu. Mironova, S. S. Vlasenko, X. Chi, M. O. Andreae, and E. F. Mikhailov, “Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011,” Izv., Atmos. Ocean Phys. 51 (2), 512–519 (2015).

    Article  Google Scholar 

  38. E. F. Mikhailov, O. A. Ivanova, S. S. Vlasenko, E. Yu. Nebos’ko, and T. I. Ryshkevich, “Cloud condensation nuclei activity of the Aitken mode particles near St. Petersburg, Russia,” Izv., Atmos. Ocean Phys. 53 (3), 326–333 (2015).

    Article  Google Scholar 

  39. S. M. Sakerin, D. M. Kabanov, V. V. Pol’kin, V. F. Radionov, B. N. Holben, and A. Smirnov, “Variations in aerosol optical and microphysical characteristics along the route of Russian Antarctic expeditions in the East Atlantic,” Atmos. Ocean. Opt. 30 (1), 89–102 (2017).

    Article  Google Scholar 

  40. S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. V. Pol’kin, and V. F. Radionov, “Zonal distribution of aerosol physicochemical characteristics in the Eastern Atlantic,” Atmos. Ocean. Opt. 31, 492–501 (2018).

    Article  Google Scholar 

  41. S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. V. Pol’kin, Yu. S. Turchinovich, T. V. Khodzher, and O. I. Khuriganova, “Spatiotemporal variations in aerosol characteristics along the route of the Indian-Atlantic Expedition onboard the research vessel “Akademik Nikolaj Strakhov,” Atmos. Ocean. Opt. 30 (4), 349–359 (2017).

    Article  Google Scholar 

  42. V. M. Kopeikin, A. S. Emilenko, A. A. Isakov, O. V. Loskutova, and T. Ya. Ponomareva,“Variability of soot and fine aerosol in the Moscow Region in 2014–2016,” Atmos. Ocean. Opt. 31, 243–249 (2018).

    Article  Google Scholar 

  43. E. F. Mikhailov, S. Mironova, G. Mironov, S. Vlasenko, X. Chi, Panov, D. Walter, S. Carbone, P. Artaxo, M. Heimann, J. Lavric, U. Poschl, and M. O. Andreae, “Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino tall tower observatory (ZOTTO) in Central Siberia,” Atmos. Chem. Phys. 17, 14365–14392 (2017).

    Article  Google Scholar 

  44. S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, et al., “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea Route,” Atmos. Chem. Phys. 15 (21), 12413–12443 (2015).

    Article  Google Scholar 

  45. S. M. Sakerin, D. M. Kabanov, V. F. Radionov, D. G. Chernov, Yu. S. Turchinovich, K. E. Lubo-Lesnichenko, and A. N. Prakhov, “Generalization of results of atmospheric aerosol optical depth measurements on Spitsbergen Archipelago in 2011–2016,” Atmos. Ocean. Opt. 31 (2), 163–170 (2018).

    Article  Google Scholar 

  46. C. Tomasi, A. A. Kokhanovsky, A. Lupi, et al., “Aerosol remote sensing in polar regions,” Earth-Sci. Rev. 140, 108–157 (2015).

    Article  Google Scholar 

  47. N. Y. Chubarova, A. A. Poliukhov, and I. D. Gorlova, “Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction,” Atmos. Meas. Tech., 9 (2), 593–608 (2016).

    Article  Google Scholar 

  48. G. G. Matvienko, B. D. Belan, M. V. Panchenko, et al., “Complex experiment on studying the microphysical, chemical, and optical properties of aerosol particles and estimating the contribution of atmospheric aerosol-to-earth radiation budget,” Atmos. Meas. Tech. 8 (10), 4507–4520 (2015).

    Article  Google Scholar 

  49. N. Chubarova, A. Poliukhov, M. Shatunova, G. Rivin, R. Becker, and S. Kinne, “Clear-sky radiative and temperature effects of different aerosol climatologies in the COSMO model,” Geography, Environment, Sustainability, 11 (1), 74–84 (2018).

    Article  Google Scholar 

  50. A. Smirnov, T. B. Zhuravleva, M. Segal-Rosenheimer, and B. N. Holben, “Limitations of AERONET SDA product in presence of cirrus clouds,” J. Quant. Spectrosc. Radiat. Transfer 206, 338–341 (2018).

    Article  Google Scholar 

  51. G. I. Gorchakov, A. V. Vasil’ev, K. S. Verichev, E. G. Semutnikova, and A. V. Karpov, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).

    Article  Google Scholar 

  52. G. I. Gorchakov, A. V. Karpov, N. V. Pankratova, E. G. Semutnikova, A. V. Vasil’ev, and I. A. Gorchakova, “Brown and black carbons in smoke-filled atmosphere during boreal forest fires,” Issled. Zemli Kosmosa, No. 3, 11–21 (2017).

    Google Scholar 

  53. G. I. Gorchakov, A. V. Karpov, A. V. Vasiliev, and I. A. Gorchakova, “Brown and black carbons in megacity smogs,” Atmos. Oceanic Opt. 30 (3), 248–254 (2017).

    Article  Google Scholar 

  54. M. V. Panchenko and T. B. Zhuravleva, “Vertical profiles of optical and microphysical characteristics of tropospheric aerosol based on the results of aviation measurements,” in Light Scattering Surveys 10. Springer Praxis Books (Springer, Berlin, 2016), pp. 199–234.

    Google Scholar 

  55. M. V. Panchenko, S. A. Terpugova, V. V. Pol’kin, V. S. Kozlov, and D. G. Chernov, “Modeling of aerosol radiation-relevant parameters in the troposphere of Siberia on the basis of empirical data,” Atmosphere 9 (11), 414–430 (2018).

    Article  Google Scholar 

  56. M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016).

    Article  Google Scholar 

  57. T. B. Zhuravleva, M. V. Panchenko, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in extremely smoke-laden atmosphere according to data of aircraft observations,” Atmos. Oceanic Opt. 31, 25–30 (2018).

    Article  Google Scholar 

  58. I. M. Nasrtdinov, T. B. Zhuravleva, and T. Yu. Chesnokova, “Estimation of direct radiative effects of background and smoke aerosol in the IR spectral region for Siberian summer conditions,” Atmos. Oceanic Opt. 31 (3), 317–323 (2018).

    Article  Google Scholar 

  59. G. I. Gorchakov, G. S. Golitsyn, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Large-scale haze over Eurasia in July 2016,” Dokl. Earth Sci. 482 (1), 1212–1215 (2018).

    Article  Google Scholar 

  60. E. G. Semoutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Oceanic Opt. 31, 171–180 (2018).

    Article  Google Scholar 

  61. G. I. Gorchakov, S. A. Sitnov, E. G. Semoutnikova, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, N. V. Pankratova, T. Ya. Ponomareva, G. A. Kuznetsov, O. V. Loskutova, E. A. Kozlovtseva, and K. V. Rodina “Large-scale smoke Haze over the European Part of Russia and Belorus in July 2016”, Izv., Atmos. Ocean Phys. 54, 986–996 (2018).

    Article  Google Scholar 

  62. I. A. Gorchakova, I. I. Mokhov, P. P. Anikin, and A. S. Emilenko, “Radiative and thermal impacts of smoke aerosol longwave absorption during fires in the Moscow region in summer 2010,” Izv., Atmos. Ocean Phys. 54 (2), 154–161 (2018).

    Article  Google Scholar 

  63. I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere,” Izv., Atmos. Ocean Phys. 51 (3), 113–126 (2015).

    Article  Google Scholar 

  64. A. A. Cheremisin, P. V. Novikov, V. N. Marichev, and A. N. Pavlov, “Interpretation of the lidar observations of volcanic aerosol over Tomsk and Vladivostok in the summer 2011 by trajectory method,” Proc. SPIE—Int. Soc. Opt. Eng., 10466, 76 (2017) https://doi.org/10.1117/12.2292543

  65. Yu. Timofeev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016).

    Article  Google Scholar 

  66. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, M. Eremenko, and G. Dufour, “Evaluation of ozone content in different atmospheric layers using ground-based Fourier transform spectrometry,” Izv., Atmos. Ocean Phys. 51, 167–176 (2015).

    Article  Google Scholar 

  67. Yu. M. Timofeyev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, N. N. Filippov, S. Ch. Foka, “Spatial-temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements”, Izv., Atmos. Ocean. Phys. 55 (1), 59–64 (2019).

  68. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, M. V. Makarova, A. V. Poberovskii, and H. K. Imhasin, “Ground-based measurements of the total column of freons in the atmosphere near St. Petersburg (2009–2017),” Izv., Atmos. Ocean. Phys. 54 (5), 487–494 (2018).

    Article  Google Scholar 

  69. Yu. M. Timofeev, A. V. Polyakov, and A. V. Poberovsky, “HCl content has ceased to increase in the atmosphere of the Northern Hemisphere,” Dokl. Earth Sci. 470, 994–996 (2016).

    Article  Google Scholar 

  70. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, O. Kirner, and M. Höpfner, “Chlorine nitrate in the atmosphere over St. Petersburg,” Izv., Atmos. Ocean. Phys. 51 (1), 49–56 (2015).

    Article  Google Scholar 

  71. P. Wang, N. F. Elansky, Yu. M. Timofeev, et al., “Long-term trends of carbon monoxide total columnar amount in urban areas and background regions: ground- and satellite-based spectroscopic measurements,” Adv. Atmos. Sci. 35 (7), 785–795 (2018).

    Article  Google Scholar 

  72. V. S. Rakitin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, A. V. Dzhola, Yu. A. Shtabkin, P. Wang, G. Wang, A. V. Vasilieva, M. V. Makarova, and E. I. Grechko, “Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements,” Atmos. Oceanic Opt. 30 (6), 517–526 (2017).

    Article  Google Scholar 

  73. V. S. Rakitin, N. F. Elansky, P. Wang, et al., “Changes in trends of atmospheric composition over urban and background regions of Eurasia: estimates based on spectroscopic observations,” Geography. Environment. Sustainability 11 (2), 84–96 (2018).

    Article  Google Scholar 

  74. C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, et al., “NDACC harmonized formaldehyde time-series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).

    Article  Google Scholar 

  75. Ya. A. Virolainen, Yu. M. Timofeev, I. A. Berezin, S. P. Smyshlyaev, M. A. Motsakov, and O. Kirner, “Validation of atmospheric numerical models based on satellite measurements of ozone columns,” Russ. Meteorol. Hydrol. 43 (3), 161–167 (2018).

    Article  Google Scholar 

  76. Yu. M. Timofeyev, S. P. Smyshlyaev, Y. A. Virolainen, A. S. Garkusha, A. V. Polyakov, M. A. Motsakov, and O. Kirner, “Case study of ozone anomalies over Northern Russia in the 2015/2016 winter: Measurements and numerical modeling,” Ann. Geophys. 36, 1495–1505 (2018).

    Article  Google Scholar 

  77. M. V. Cherepova, S. P. Smyshlyaev, M. V. Makarova, A. V. Poberovskii, Yu. M. Timofeev, and G. M. Shved, “A study of the column methane short-term variability in the atmosphere on a regional scale,” Izv., Atmos. Ocean Phys. 54, 558–568 (2018).

    Article  Google Scholar 

  78. Yu. M. Timofeev, Ya. A. Virolainen, S. P. Smyshlyaev, and M. A. Motsakov, “Ozone over St. Petersburg: Comparison of experimental data and numerical simulation,” Atmos. Oceanic Opt. 30 (3), 263–268 (2017).

    Article  Google Scholar 

  79. Ya. A. Virolainen, Yu. M. Timofeev, S. P. Smyshlyaev, M. A. Motsakov, and O. Kirner, “Study of ozone layer variability near St. Petersburg on the basis of SBUV satellite measurements and numerical simulation (2000–2014),” Izv., Atmos. Ocean. Phys. 53, 911–917 (2017).

    Article  Google Scholar 

  80. S. P. Smyshlyaev, Ya. A. Virolainen, M. A. Motsakov, A. V. Polyakov, Yu. M. Timofeev, and A. V. Poberovskii, “Interannual and seasonal variations in ozone in different atmospheric layers over St. Petersburg based on observational data and numerical modeling,” Izv., Atmos. Ocean. Phys. 53 (3), 301–315 (2017).

    Article  Google Scholar 

  81. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, D.V. Ionov, O. Kirner, A. V. Poberovskii, and Kh. Imkhasin, “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3, HCl, and NO2 and from their numerical simulation,” Izv., Atmos. Ocean. Phys. 52 (1), 57–65 (2016).

    Article  Google Scholar 

  82. G. M. Shved, Ya. A. Virolainen, Yu. M. Timofeyev, S. I. Ermolenko, S. P. Smyshlyaev, M. A. Motsakov, and O. Kirner, “Ozone temporal variability in the Subarctic region: comparison of satellite measurements with numerical simulations,” Izv., Atmos. Ocean Phys. 54 (1), 32–38 (2018).

    Article  Google Scholar 

  83. A. V. Polyakov, Yu. M. Timofeev, A. V. Poberovskii, and Ya. A. Virolainen, “Consideration of high surface concentrations of hydrochloric acid vapors in ground-based spectroscopic measurements,” Atmos. Oceanic Opt. 28 (3), 240–244 (2015).

    Article  Google Scholar 

  84. Ya. A. Virolainen, “Methodical aspects of the determination of carbon dioxide in atmosphere using FTIR spectroscopy,” J. Appl. Spectrosc. 85 (3), 462–469 (2018).

    Article  Google Scholar 

  85. M. V. Makarova, A. V. Poberovsky, F. Hase, Yu. M. Timofeyev, and Kh. Kh. Imhasin, “Determination of the characteristics of the ground-based IR spectral instrumentation in applications of environmental monitoring of the atmosphere,” J. Appl. Spectrosc., 83, 429–436 (2016).

    Article  Google Scholar 

  86. D. V. Ionov, Yu. M. Timofeev, and A. V. Poberovskii, “Spectroscopic measurements of O3 and NO2 atmospheric content: Correction of ground-based method and comparison with satellite data,” Atmos. Oceanic Opt. 28 (6), 526–532 (2015).

    Article  Google Scholar 

  87. D. V. Ionov, A. V. Poberovskii, and V. V. Ionov, “Spectroscopic remote sensing of NO2 levels in urban air,” J. Appl. Spectrosc. 84 (1), 109–113 (2017).

    Article  Google Scholar 

  88. K. A. Volkova, A. V. Poberovskii, Yu. M. Timofeev, D. V. Ionov, B. N. Holben, A. Smirnov, and I. Slutsker, “Aerosol optical characteristics retrieved from CIMEL sun photometer measurements (AERONET) near St. Petersburg,” Atmos. Oceanic Opt. 31 (6), 635–641 (2018).

    Article  Google Scholar 

  89. V. S. Kostsov, “Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data,” Izv., Atmos. Ocean. Phys. 51 (2), 156–166 (2015).

    Article  Google Scholar 

  90. V. S. Kostsov, Yu. M. Timofeyev, N. A. Zaitsev, A. V. Poberovsky, and S. I. Osipov, “Application of the information approach to the analysis of two-year microwave observations of the atmosphere by the RPG-HATPRO radiometer at St. Petersburg University,” Int. J. Rem. Sens. 37 (14) 3346–3364 (2016).

    Article  Google Scholar 

  91. D. A. Bochkovskii, Ya. A. Virolainen, Yu. Yu. Kulikov, V. N. Marichev, A. V. Poberovskii, V. G. Ryskin, and Yu. M. Timofeev, “Ground-based microwave monitoring of ozone content in the middle atmosphere over Petergof and Tomsk during the stratospheric warming in the winter 2013–2014,” Radiophys. Quantum Electron. 59 (4), 270–277 (2016).

    Article  Google Scholar 

  92. M. V. Makarova, D. K. Arabadzhyan, S. Ch. Foka, N. N. Paramonova, A. V. Poberovskii, Yu. M. Timofeev, N. V. Pankratova, and V. S. Rakitin, “Estimation of nocturnal area fluxes of carbon cycle gases in Saint Petersburg suburbs,” Russ. Meteorol. Hydrol. 43, 449–455 (2016).

    Article  Google Scholar 

  93. D. V. Ionov and A. V. Poberovskii, “Integral emission of nitrogen oxides from the territory of St. Petersburg based on the data of mobile measurements and numerical simulation results,” Izv., Atmos. Ocean Phys. 53 (2), 204–212 (2017).

    Article  Google Scholar 

  94. I. A. Berezin, Ya. A. Virolainen, Yu. M. Timofeev, and A. V. Poberovskii, “The comparison of IR and MW ground-based measurements of total precipitable water,” Izv., Atmos. Ocean Phys. 52, 253–256 (2016).

    Article  Google Scholar 

  95. I. A. Berezin, Yu. M. Timofeev, Ya. A. Virolainen, and K. A. Volkova, “Comparison of ground-based microwave measurements of precipitable water vapor with radiosounding data,” Atmos. Oceanic Opt. 29 (3), 274–281 (2016).

    Article  Google Scholar 

  96. I. A. Berezin, Yu. M. Timofeev, Ya. A. Virolainen, I. S. Frantsuzova, K. A. Volkova, A. V. Poberovskii, B. N. Kholben, A. Smirnov, and I. Slutsker, “Error analysis of integrated water vapor measured by CIMEL photometer,” Izv., Atmos. Ocean. Phys. 53 (1), 58–64 (2017).

    Article  Google Scholar 

  97. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, et al., “Quality assessment of integrated water vapour measurements at St. Petersburg site, Russia: FTIR vs. MW and GPS techniques,” Atmos. Meas. Tech. 10, 4521–4536 (2017).

    Article  Google Scholar 

  98. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, A. V. Polyakov, and A. M. Shalamyanskii, “Empirical assessment of errors in total ozone measurements with different instruments and methods,” Atmos. Oceanic Opt. 30 (4), 382–388 (2017).

    Article  Google Scholar 

  99. D. V. Ionov, V. V. Kalinnikov, Yu. M. Timofeyev, N. A. Zaitsev, Y. A. Virolainen, V. S. Kostsov, and A. V. Poberovskii, “Comparison of optical infrared ground-based methods for measuring integrated content of atmospheric water vapor in atmosphere,” Radiophys. Quantum Electron. 60 (4), 300–308 (2016).

  100. Ya. Virolainen, Yu. Timofeyev, I. Berezin, A. Poberovsky, A. Polyakov, N. Zaitsev, and H. Imhasin, “Atmospheric integrated water vapour measured by IR and MW techniques at the Peterhof site (Saint Petersburg, Russia),” Int. J. Remote Sens. 37 (16), 3771–3785 (2016).

    Article  Google Scholar 

  101. I. A. Berezin, Yu. M. Timofeev, Ya. A. Virolainen, A. V. Polyakov, and N. A. Zaitsev, “The effect of spatial coordination on the results of comparison of ground-based and satellite measurements of total moisture content,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (4), 149–156 (2016).

    Article  Google Scholar 

  102. A. N. Borovskii, A. Ya. Arabov, G. S. Golitsyn, A. N. Gruzdev, N. F. Elanskii, A. S. Elokhov, I. I. Mokhov, V. V. Savinykh, I. A. Senik, and A. V. Timazhev, “Variations of total nitrogen oxide content in the atmosphere over the North Caucasus,” Russ. Meteorol. Hydrol. 41, 93–103 (2016).

    Article  Google Scholar 

  103. G. S. Golitsyn, E. I. Grechko, G. Wang, P. Wang, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  104. V. N. Kozhevnikov, N. F. Elanskii, and K. B. Moiseenko, “Mountain wave-induced variations of ozone and total nitrogen dioxide contents over the Subpolar Urals,” Dokl. Earth Sci. 475, 958–962 (2017).

    Article  Google Scholar 

  105. I. Bruchkouski, A. Borovski, A. Elokhov, and O. Postylyakov, “A layout of two-port DOAS system for investigation of atmospheric trace tases based on laboratory spectrograph,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100353 (2016).

  106. I. I. Bruchkouski, A. N. Borovski, A. V. Dzhola, N. F. Elansky, O. V. Postylyakov, O. E. Bazhenov, O. A. Romanovskii, S. A. Sadovnikov, and Y. Kanaya, “Observations of integral formaldehyde content in the lower troposphere in urban agglomerations of Moscow and Tomsk using the method of differential optical absorption spectroscopy,” Atmos. Oceanic Opt. 32 (3), 248–256 (2019).

    Article  Google Scholar 

  107. O. Postylyakov, A. Borovski, and V. Ivanov, “On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 96804 (2015).

  108. V. V. Savinykh and O. V. Postylyakov, “On development of cross-platform software to continue long-term observations with the Brewer ozone spectrophotometer,” Proc. SPIE—Int. Soc. Opt. Eng. 10786, 107860 (2018).

  109. K. N. Visheratin, A. F. Nerushev, M. D. Orozaliev, X. Zheng, S. Sun, and L. Liu, “Temporal variability of total ozone in the Asian region inferred from ground-based and satellite measurement data,” Izv., Atmos. Ocean. Phys. 53, 894–903 (2017).

    Article  Google Scholar 

  110. K. N. Visheratin, “Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa Station (Switzerland),” Izv., Atmos. Ocean. Phys. 52 (1), 66–73 (2016).

    Article  Google Scholar 

  111. K. N. Visheratin, “Spatio—temporal variability of phase of total ozone quasidecadal variations,” Issled. Zemli Kosmosa, No. 2, 88–95 (2017).

    Google Scholar 

  112. K. N. Visheratin and M. V. Kalashnik, “Quasi-decadal variations of lower stratosphere meteorological parameters and total ozone global fields based on satellite data,” Izv., Atmos. Ocean. Phys. 54, 1068–1075 (2018).

    Article  Google Scholar 

  113. V. A. Korshunov and D. S. Zubachev, “Temporal variations in the vertical distribution of stratospheric ozone over Obninsk from lidar data,” Russ. Meteorol. Hydrol. 43, 168–177 (2018).

    Article  Google Scholar 

  114. D. S. Zubachev, V. A. Korshunov, and N. V. Tereb, “Concentration of stratospheric ozone derived from lidar, satellite, and surface observations,” Meteorol. Gidrol. 43, 488–493 (2018).

    Google Scholar 

  115. S. B. Rozanov, A. S. Zavgorodniy, and A. N. Ignat’ev, “Technique of time-frequency analysis of a series of measurements of the radiation spectra of night mesospheric ozone in the millimetric wavelength range,” Meas. Tech. 59 (8), 870–877 (2016).

    Article  Google Scholar 

  116. S. B. Rozanov, A. S. Zavgorodniy, A. N. Ignatyev, and A. N. Lukin, “Variations in microwave radiation of the nighttime mesospheric ozone over Moscow,” Radiophys. Quantum Electron. 59, 741–753 (2017).

  117. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Anomalies of the ozone and nitrogen dioxide contents in the stratosphere over Moscow region as a manifestation of the dynamics of the stratospheric polar vortex,” Dokl. Earth Sci. 468 (2), 602–606 (2016).

    Article  Google Scholar 

  118. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Winter–spring anomalies in stratospheric O3 and NO2 contents over the Moscow region in 2010 and 2011,” Izv., Atmos. Ocean Phys. 53, 195–203 (2017).

    Article  Google Scholar 

  119. S. V. Solomonov, E. P. Kropotkina, S. B. Rozanov, A. N. Ignat’ev, and A. N. Lukin, “Influence of strong sudden stratospheric warmings on ozone in the middle stratosphere according to millimeter wave observations,” Geomagn. Aeron. 57 (3), 361–368 (2017).

    Article  Google Scholar 

  120. P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, et al., “Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012,” J. Geophys. Res.: Atmos. 123 (4), 2285–2297 (2018).

    Google Scholar 

  121. A. S. Yasyukevich, M. V. Klimenko, Yu. Yu. Kulikov, V. V. Klimenko, F. S. Bessarab, Yu. N. Koren’kov, V. N. Marichev, K. G. Ratovskii, and S. A. Kolesnik, “Changes in the middle and upper atmosphere parameters during the sudden stratospheric warning in January 2013”, Solar-Terrestrial Physics. 4 (4), 48–58 (2018).

    Article  Google Scholar 

  122. G. G. Matvienko, Y. Y. Kulikov, V. N. Marichev, D. A. Bochkovsky, A. A. Krasilnikov, and V. G. Ryskin, “Study of the influence of the stratospheric warming in January 2013 on the vertical structure of ozone and temperature in the middle atmosphere over tomsk using microwave and lidar diagnostics,” ILRC27 EPJ Web Conf. 119, 24002 (2016). https://doi.org/10.1051/epjconf/2016119224002

  123. A. V. Nikitin, O. M. Lyulin, S. N. Mikhailenko, V. I. Perevalov, et al., “GOSAT-2014 methane spectral line list,” J. Quant. Spectrosc. Radiat. Transfer 154, 63–71 (2015).

    Article  Google Scholar 

  124. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, “CDSD-296, high resolution carbon dioxide spectroscopic databank: version for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 152, 45–73 (2015).

    Article  Google Scholar 

  125. T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Retrieval of content of greenhouse gases from atmospheric spectra of solar radiation with the use of different spectroscopic data on absorption lines,” Atmos. Ocean. Opt. 28 (5), 469–475 (2015).

    Article  Google Scholar 

  126. T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals,” J. Mol. Spectrosc. 327, 171–179 (2016).

    Article  Google Scholar 

  127. T. Yu. Chesnokova, A. V. Chentsov, and K. M. Firsov, “Atmospheric radiative transfer simulation in water vapor total content retrievals using different spectroscopic databanks of H2O absorption line parameters,” Atmos. Oceanic Opt. 29 (2), 119–126 (2016).

    Article  Google Scholar 

  128. T. M. Petrova, A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov, Yu. N. Ponomarev, and T. Yu. Chesnokova, “Parameters of broadening of water molecule absorption lines by argon derived using different line profile models,” Atmos. Oceanic Opt. 30 (2), 123–128 (2017).

    Article  Google Scholar 

  129. K. M. Firsov, T. Yu. Chesnokova, and I. I. Klitochenko, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).

    Google Scholar 

  130. K. M. Firsov, T. Yu. Chesnokova, A. A. Razmolov, and A. V. Chentsov, “Contribution of the water vapor continuum absorption to shortwave solar fluxes in the Earth’s atmosphere with cirrus cloudiness,” Atmos. Oceanic Opt. 31, 1–8 (2017).

    Article  Google Scholar 

  131. T. Yu. Chesnokova, K. M. Firsov, and A. A. Razmolov, “Contribution of the water vapor continuum absorption to the radiation ralance of the atmosphere with cirrus clouds,” Atmos. Oceanic Opt. 32 (1), 64–71 (2019).

    Article  Google Scholar 

  132. V. V. Asmus, A. I. Bedritskii, V. N. Stasenko, S. V. Tasenko, and A. B. Uspenskii, “Development of the space observation system and geophysical monitoring system in Roshydromet,” Russ. Meteorol. Hydrol. 42, 442–451 (2017).

    Article  Google Scholar 

  133. A. B. Uspensky, V. V. Asmus, A. A. Kozlov, E. K. Kramchaninova, A. M. Streltsov, G. Ya. Chernyavsky, and I. V. Cherny, “Absolute calibration of the MTVZA-GY microwave radiometer atmospheric sounding channels,” Izv., Atmos. Ocean Phys. 53 (9), 1192–1204 (2017).

    Article  Google Scholar 

  134. A. B. Uspenskii, E. K. Kramchaninova, V. S. Kostsov, S. A. Uspenskii, and I. V. Chernyi, “Development of an external calibration and data validation system for the measurements by the MTVZA-GYa microwave radiometer of the Meteor-M No. 2 satellite,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 14 (4), 27–35 (2017).

    Article  Google Scholar 

  135. D. Gayfulin, M. Tsyrulnikov, and A. Uspensky, “Post-launch assessment and adaptive correction for atmospheric sounding channels of the satellite microwave radiometer MTVZA-GY,” Pure Appl. Geophys. 175 (10), 3653–3670 (2018).

    Article  Google Scholar 

  136. D. Gayfulin, M. Tsyrulnikov, and A. Uspensky, “Assessment and recalibration of Meteor-M N2 microwave imager/sounder MTVZA-GY data in atmospheric sounding channels,” GSICS Quart. 12 (1), 6–8 (2018).

    Google Scholar 

  137. A. V. Polyakov, Yu. M. Timofeyev, Ya. A. Virolainen, A. B. Uspensky, F. S. Zavelevich, Yu. M. Golovin, D. A. Kozlov, A. N. Rublev, and A. V. Kukharsky, “Satellite atmospheric sounder IRFS-2 1. Analysis of outgoing radiation spectra seasurements,” Izv., Atmos. Ocean Phys. 53 (9), 1185–1191 (2017).

    Article  Google Scholar 

  138. F. Zavelevich, D. Kozlov, I. Kozlov, I. Cherkashin, A. Uspensky, Yu. Kiseleva, “IKFS-2 radiometric calibration stability in different spectral bands,” GSICS Quart. Winter Iss., 4–6 (2018).

  139. Yu. M.Golovin, F. S. Zavelevich, D. A. Kozlov, I. A.  Kozlov, D. O. Monakhov, A. G. Nikulin, A. B. Uspenskii, A. N. Rublev, and A. V. Kukharskii, “Infrared Fourier spectrometer IKFS 2: results of use on board the Meteor-M No. 2 satellite,” Issled. Zemli Kosmosa, No. 4, 88–100 (2017).

    Google Scholar 

  140. A. Filei, A. Rublev, and A. Zaitsev, “Radiometric inter-calibration of MSU-MR shortwave channels on-board Meteor-M No. 2 relative to AVHRR on-board Metop-A,” GSICS Quart. 12 (1), 11–13 (2018).

  141. Yu. V. Kiseleva, Yu. M. Gektin, A. A. Zaytsev, A. V. Kuharsky, A. N. Rublev, and A. B. Uspenskii, “Data intercalibration technique for infrared channels of the Elektro-L/MSU-GS imager with the AIRS infrared sounder data,” Izv., Atmos. Ocean Phys. 52, 1181–1190 (2016).

    Article  Google Scholar 

  142. A. N. Rublev, E. V. Gorbarenko, V. V. Golomolzin, E. Y. Borisov, Ju. V. Kiseleva, Yu. M. Gektin, and A. A. Zaitsev, “Inter-calibration of infrared channels of geostationary meteorological satellite imagers,” Front. Environ. Sci. (2018). https://doi.org/10.3389/fenvs.2018.00142

  143. A. Filei, A. Rublev, Yu. Kiseleva, and A. Zaitsev, “Radiometric inter-calibration between MSU-GS and VIIRS shortwave channels,” GSICS Quart. 12 (1), 13–15 (2018).

    Google Scholar 

  144. V. V. Asmus, Yu. M. Timofeev, A. V. Polyakov, A. B. Uspensky, Yu. M. Golovin, F. S. Zavelevich, D. A. Kozlov, A. N. Rublev, A. V. Kukharsky, V. P. Pyatkin, and E. V. Rusin, “Atmospheric temperature sounding with the Fourier spectrometer,” Izv., Atmos. Ocean Phys. 53 (4), 428–432 (2017).

    Article  Google Scholar 

  145. A. V. Polyakov, Yu. M. Timofeev, A. B. Uspenskii, and A. V. Kukharskii, “IKFS-2 Satellite Atmospheric Sounder. Part 2. Validation of Air Temperature Sounding Results,” Issled. Zemli Kosmosa, No. 1, 81–90 (2017).

    Google Scholar 

  146. E. Rusin, V. Pyatkin, A. Kozlov, A. Rublev, A. Uspensky, A. Polyakov, Ya. Virolainen, and Yu. Timofeyev, “Fast radiative transfer model for hyperspectral Meteor-M data simulation,” GSICS Quart. 9 (3), 5–7 (2015).

    Google Scholar 

  147. A. S. Garkusha, A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Kukharskii, “Determination of the total ozone content from data of satellite IR IKFS-2 Fourier-spectrometer in a cloudy atmosphere,” Issled. Zemli Kosmosa, No. 2, 58–64 (2017).

    Google Scholar 

  148. A. S. Garkusha, A. V. Polyakov, Yu. M. Timofeev, and Ya. A. Virolainen, “Determination of the total ozone content from data of satellite IR Fourier-spectrometer,” Izv., Atmos. Ocean Phys. 53 (4), 433–440 (2017).

    Article  Google Scholar 

  149. V. A. Falaleeva and B. A. Fomin, “Overcoming spectroscopic challenges in direct problems of satellite sounding of the atmosphere,” Atmos. Oceanic Opt. 30, 1–6 (2017).

    Article  Google Scholar 

  150. E. V. Volkova, and A. B. Uspenskii, “Detection and assessment of cloud cover and precipitation parameters using data of scanning radiometers of polar–orbiting and geostationary meteorological satellites,” Izv., Atmos. Ocean Phys. 52 (9), 1097–1109 (2016).

    Article  Google Scholar 

  151. E. V. Volkova, A. B. Uspenskii, and A. V. Kukharskii, “Specialized complex of programs for retrieving and validating satellite estimates of cloud and precipitation,” Sovr. Probl. Dist. Zond. Zemli Kosm. 12 (3), 7–26 (2015).

    Google Scholar 

  152. E. V. Volkova, “Assessment of microphysical parameters of the cloud cover based on satellite data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (4), 265–279 (2018).

    Article  Google Scholar 

  153. E. V. Volkova, “Assessment of cloud cover and precipitation parameters based on MSU-MR radiometric data from a polar-orbit Meteor-M No. 2 meteorological satellite for European Russia,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 14 (5), 300–320 (2017).

  154. V. G. Bondur, and A. S.Ginzburg, “Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring,” Dokl. Earth Sci. 466 (2), 148–152 (2016).

    Article  Google Scholar 

  155. T. V. Russkova and P. N. Zenkova, “Nitrogen dioxide content in the troposphere of West Siberia as revealed by satellite monitoring. Spatiotemporal variability,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 15 (7), 221–235 (2018).

    Article  Google Scholar 

  156. O. V. Postylyakov, A. N. Borovski, and A. A. Makarenkov, “First experiment on retrieval of tropospheric NO2 over polluted areas with 2.4-km spatial resolution basing on satellite spectral measurements,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 104662 (2017).

  157. E. V. Zabolotskikh, “Contemporary methods for retrieving the integrated atmospheric water-vapor content and the total cloud liquid-water content,” Izv., Atmos. Ocean Phys. 53 (3), 294–300 (2017).

    Article  Google Scholar 

  158. E. V. Zabolotskikh and B. Chapron, “Neural network-based method for the estimation of the rain rate over oceans by measurements of the satellite radiometer AMSR2,” Izv., Atmos. Ocean Phys. 52 (1), 82–88 (2016).

    Article  Google Scholar 

  159. E. V. Zabolotskikh and B. Chapron, “Improvements in atmospheric water vapor content retrievals over open oceans from satellite passive microwave radiometers,” IEEE J. Sel. Topics in Appl. Earth Obs. Rem. Sens 10 (7), 3125–3133 (2017).

    Article  Google Scholar 

  160. N. Reul, B. Chapron, and A. Mouche, “A new generation of tropical cyclone size measurements from space,” Bull. Am. Meteorol. Soc. 98 (22), 2367–2385 (2017).

    Article  Google Scholar 

  161. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Oceanic Opt. 28 (6), 533–542 (2015).

    Article  Google Scholar 

  162. N. V. Rokotyan, R. Imasu, V. I. Zakharov, K. G. Gribanov, and M. Yu. Khamatnurova, “The amplitude of the CO2 seasonal cycle in the atmosphere of the Ural region retrieved from ground-based and satellite near-IR measurements,” Atmos. Oceanic Opt. 28 (1), 49–55 (2015).

    Article  Google Scholar 

  163. I. N. Plakhina, N. V. Pankratova, and E. L. Makhotkina, “Comparison of ground-based and satellite monitoring data for aerosol optical thickness of the atmosphere over the territory of Russia,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 15 (2), 225–234 (2018).

    Article  Google Scholar 

  164. M. V. Kalashnik, A. F. Nerushev, and R. V. Ivangorodskii, “Characteristic scales and horizontal asymmetry of jet streams in the Earth’s atmosphere,” Izv., Atmos. Ocean Phys. 53, 156–163 (2017).

    Article  Google Scholar 

  165. A. F. Nerushev, K. N. Visheratin, and R. V. Ivangorodskii, “Spatiotemporal variability of high-altitude jet streams from satellite measurements,” Izv., Atmos. Ocean Phys. 54, 1076–1088 (2018).

    Article  Google Scholar 

  166. Ph. L. Bykov, E. V. Vasilenko, V. A. Gordin, and L. L. Tarasova, “The statistical structure of the field of surface soil layer moisture from ground-based and satellite observations,” Russ. Meteorol. Hydrol. 42, 403–414 (2017).

    Article  Google Scholar 

  167. E. V. Volkova and S. A. Uspenskii, “Remote sensing of surface temperature, ground air temperature, and effective temperature from satellite data for the south of European Russia,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 13 (5), 46–58 (2016).

    Article  Google Scholar 

  168. A. B. Uspenskii, A. V. Kukharskii, and S. A. Uspenskii, “Validation of the results of the satellite monitoring of land surface temperature,” Russ. Meteorol. Hydrol. 40 (2), 131–140 (2015).

    Article  Google Scholar 

  169. S. A. Bartalev, D. E. Plotnikov, and E. A. Loupian, “Mapping of arable land in Russia using multiyear time teries of MODIS data and the LAGMA classification technique,” Remote Sens. Lett. 7 (3), 269 (2016).

    Article  Google Scholar 

  170. M. V. Bukharov, “Identification of the properties of the Arctic and Antarctic ice cover from the MTVZA-GYa microwave radiometer data,” Russ. Meteorol. Hydrol. 40 (7), 470–476 (2015).

    Article  Google Scholar 

  171. M. V. Bukharov, “Studying the effects of vortices flowing around seamounts on ice properties from satellite microwave data,” Russ. Meteorol. Hydrol. 41 (10), 698–705 (2016).

    Article  Google Scholar 

  172. M. V. Bukharov, “Semidiurnal frequency of the fields of the Arctic ice rarefaction and compression from the MTVZA-GYa satellite radiometer data,” Russ. Meteorol. Hydrol. 42 (1), 46–53 (2017).

    Article  Google Scholar 

  173. V. V. Asmus, E. V. Vasilenko, V. V. Zatyagalova, N. P. Ivanova, V. A. Krovotyntsev, A. A. Maksimov, and I. S. Trenina, “Satellite monitoring of sea ice cover and water parameters of the Caspian Sea,” Russ. Meteorol. Hydrol. 43 (10), 686–696 (2018).

    Article  Google Scholar 

  174. V. V. Tikhonov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, I. A. Repina, and N. Yu. Komarova, “Satellite microwave radiometry of sea ice of polar regions: a review,” Izv., Atmos. Ocean Phys. 52 (9), 1012–1030 (2016).

    Article  Google Scholar 

  175. V. V. Tikhonov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, I. A. Repina, and N. Yu. Komarova, “Satellite microwave radiometry-based monitoring of sea ice cover of the polar regions,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 12 (5), 150–169 (2015).

    Google Scholar 

  176. L. M. Mitnik, M. L. Mitnik, G. M. Chernyavskii, I. V. Chernyi, A. V. Vykochko, M. K. Pichugin, and E. V. Zabolotskikh, “Sea surface wind and Sea ice in the Barents Sea using microwave sensing data from Meteor-M N1 and GCOM-W1 satellites in January–March 2013,” Izv., Atmos. Ocean Phys. 52, 1041–1050 (2016).

    Article  Google Scholar 

  177. E. V. Zabolotskikh, I. A. Gurvich, and B. Chapron, “Polar lows over the Eastern part of the Eurasian Arctic: The sea-ice retreat consequence,” IEEE Geosci. Remote Sensing Lett. 13 (10), 1492 (2016).

    Article  Google Scholar 

  178. E. L. Muzylev, Z. P. Startseva, A. B. Uspensky, and E. V. Volkova, “Modeling water and heat balance components for large agricultural region utilizing information from meteorological satellites, Water Resour. 45 (5), 682 (2018).

    Article  Google Scholar 

  179. E. L. Muzylev, Z. P. Startseva, A. B. Uspenskii, E. V. Volkova, E. V. Vasilenko, A. V. Kukharskii, A. M. Zeiliger, and O. S. Ermolaeva, “Use of remote sensing data in the modeling of heat and moisture regimen in rural areas,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa. 14 (6), 108–136 (2017).

    Article  Google Scholar 

  180. D. R. Gaifulin, M. D. Tsyrul’nikov, A. B. Uspenskii, E. K. Kramchaninova, S. A. Uspenskii, P. I. Svirenko, and M.E. Gorbunov, “The usage of MTVZA-GYa satellite microwave radiometer observations in the data assimilation system of the Hydrometcenter of Russia,” Russ. Meteorol. Hydrol. 42, 564–573 (2017).

    Article  Google Scholar 

  181. Yu. M. Timofeev, A. V. Polyakov, D. A. Kozlov, W. Döhler, D. Oertel, and D. Spänkuch, “Comparison of outgoing IR radiation spectra of the different years,” Issled. Zemli Kosmosa, No. 5, 65–72 (2018).

    Google Scholar 

  182. D. A. Kozlov, Yu. M. Timofeev, A. V. Polyakov, I. A. Kozlov, W. Döhler, D. Oertel, and D. Spänkuch, “Interconversion procedure for spectra of thermal radiation of the atmosphere registered at different spectral resolutions for the comparison of measurement values from the onboard IR Fourier spectrometers,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (1), 52–60 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Timofeev or E. M. Shulgina.

Additional information

Translated by V. Selikhanovich

Russian National Report. Meteorology and Atmospheric Sciences 2015–2018, Ed. by I.I. Mokhov and A.A. Krivolutsky (National Geophysical Committee, RAS, MAX Press, Moscow, 2019).

Materials for the review are presented by V.P. Budak (MPEI); G.I. Gorchakov and O.V. Postylyakov (IAP RAS); A.F. Nerushev (SPA Typhoon); O.M. Nikolaeva (KIAM RAS); M.V. Panchenko, T.K. Sklyadneva, and T.Yu. Chesnokova (IAO SB RAS); S.B. Rozanov (Lebedev Physical Institute RAS); A.V. Uspenskii (SRC Planeta); A.A. Cheremisin (SFU); and N.E. Chubarova (Moscow State University).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, Y.M., Shulgina, E.M. Russian Investigations in the Field of Atmospheric Radiation in 2015–2018. Izv. Atmos. Ocean. Phys. 56, 1–15 (2020). https://doi.org/10.1134/S0001433820010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820010089

Keywords:

Navigation