Skip to main content
Log in

Russian investigations in the field of atmospheric radiation in 2011–2014

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A short survey prepared by the Russian Commission on Atmospheric Radiation contains the most significant results of work in the field of atmospheric-radiation studies performed in 2011–2014. It is part of the Russian National Report on Meteorology and Atmospheric Sciences prepared for the International Association on Meteorology and Atmospheric Sciences (IAMAS)1. During this period, the Russian Commission on Atmospheric Radiation, jointly with the concerned departments and organizations, organized two International Symposiums on Radiation and Dynamics (ISARD-2011 and ISARD-2013). At these conferences, the central problems in modern atmospheric physics were discussed: radiative transfer (RT) and atmospheric optics; greenhouse gases, clouds, and aerosols; remote methods of measurements; and new measurement data. This survey presents six directions covering the whole spectrum of investigations performed in the field of atmospheric radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Budak and B. A. Veklenko, “Boson peak, flickering noise, backscattering processes and radiative transfer in random media,” J. Quant. Spectrosc. Radiat. Transfer 112, 864–875.

  2. V. P. Budak, D. A. Klyuykov, and S. V. Korkin, “Complete matrix solution of radiative transfer equation for pile of horizontally slabs,” J. Quant. Spectrosc. Radiat. Transfer 112, 1141–1148.

  3. Y. A. Ilyushin and V. P. Budak, “Narrow beams in scattering media: the advanced small-angle approximation,” J. Opt. Soc. Am. A 28 (7), 1358–1363 (2011).

    Article  Google Scholar 

  4. Ya. A. Ilyushin and V. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182, 940–945 (2011).

    Article  Google Scholar 

  5. Ya. A. Ilyushin and V. P. Budak, “Calculation of light fields of concentrated sources in turbid media with strongly anisotropic scattering,” Opt. Spectrosc. 111 (6), 853–858 (2011).

    Article  Google Scholar 

  6. V. P. Budak, O. V. Shagalov, V.S. Zheltov, “Numerical radiative transfer modeling in turbid medium slab,” Proc. SPIE, 9292OY, (2014), doi 10.1117/12.2074692

  7. Ya. A. Ilyushin and V. P. Budak, “Narrow-beam propagation in two-dimensional scattering medium,” J. Opt. Soc. Am. A 28 (2), 76–81 (2011).

    Article  Google Scholar 

  8. V. P. Budak and Ya. A. Ilyushin, “Isolating the singularities of a brightness field in a turbid medium on the basis of small-angle solutions of transfer theory,” Atmos. Oceanic Opt. 24 (4), 326–334 (2011).

    Article  Google Scholar 

  9. V. P. Budak, D. S. Efremenko, and O. V. Shagalov, “Comparative analysis of algorithms of vectorial radiative transfer equation for slab by solution efficiency,” Opt. Atmos. Okeana 24 (12), 1088–1098 (2011).

    Google Scholar 

  10. V. P. Budak, D. S. Efremenko, and O. V. Shagalov, “Efficiency of algorithm for solution of vector radiative transfer equation in turbid medium slab,” J. Phys.: Conf. Ser. 369, 012021–10 (2012).

    Google Scholar 

  11. V. P. Budak and O. V. Shagalov, “Solution of the radiative transfer equation by eliminating the anisotropic part within the method of synthetic iteration,” AIP Conf. Proc. 1531, 91–94 (2013).

    Article  Google Scholar 

  12. V. P. Budak, D. S. Efremenko, and O. V. Shagalov, “Mathematical modeling of optoelectronic signals of remote sensing from the space in presence of disruptive cloudiness,” Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (9/2), 148–149 (2012).

    Google Scholar 

  13. V. P. Budak, V. S. Zheltov, and T. K. Kalakutskii, “Local estimates of the Monte-Carlo method in solving the equations of global illumination with spectral representation of objects,” Komp. Issled. Model. 4 (1), 75–84 (2012).

    Google Scholar 

  14. L. G. Sokoletsky, V. P. Budak, F. Shen, and A. A. Kokhanovsky, “Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers,” Appl. Opt. 53 (3), 459–468 (2014).

    Article  Google Scholar 

  15. I. N. Fokina, V. E. Karasik, V. M. Orlov, and V. P. Budak, “Impact of structure geometry on scattering in partially-ordered media,” J. Quant. Spectrosc. Radiat. Transfer 149, 108–116 (2014).

    Article  Google Scholar 

  16. D. A. Marakasov and V. O. Troitskii, “Propagation of electromagnetic radiation in uniaxial media,” Atmos. Oceanic Opt. 25 (6), 387–394 (2012).

    Article  Google Scholar 

  17. G. A. Mikhailov, “Asymptotic estimates of the mean probability of radiative transfer through an exponentially correlated stochastic medium,” Izv., Atmos. Ocean. Phys. 48 (6), 618–624 (2012).

    Article  Google Scholar 

  18. S. M. Prigarin, K. B. Bazarov, and U. G. Oppel, “The effect of multiple scattering on polarization and angular distributions for radiation reflected by clouds: Results of Monte Carlo simulation,” Proc. SPIE–Int. Soc. Opt. Eng. 9292, 92920 (2014). doi 10.1117/ 12.207441810.1117/12.2074418

    Google Scholar 

  19. B. A. Fomin and V. A. Falaleeva, “The vertical structure of aerosols and clouds derived from satellites equipped with high-resolution polarization sensors,” Int. J. Remote Sens. 35 (15), 5800–5811 (2014).

    Google Scholar 

  20. T. B. Zhuravleva and A. A. Kokhanovsky, “Influence of surface roughness on the reflective properties of snow,” J. Quant. Spectrosc. Radiat. Transfer 112, 1353–1368 (2011).

    Article  Google Scholar 

  21. A. S. Zapevalov and N. E. Lebedev, “Simulation of statistical characteristics of sea surface during remote optical sensing,” Atmos. Oceanic Opt. 27 (6), 487–492 (2014).

    Article  Google Scholar 

  22. I. V. Matelenok and V. V. Melent’ev, “Vector–coordinate approach to the determination of sighting geometry when the influence of large-scale ground irregularities on its SHF radiation properites,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 300–309 (2014).

    Google Scholar 

  23. O. M. Lyulin, V. I. Perevalov, I. Morino, et al., “Measurements of self-broadening and self-induced pressure- shift parameters of methane spectral lines in the 5556-6166 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 112, 531–539 (2011).

    Article  Google Scholar 

  24. O. M. Lyulin, A. Campargue, D. Mondelain, and S. Kassi, “The absorption spectrum of acetylene by CRDS between 7244 and 7918 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 130, 327–334 (2013).

    Article  Google Scholar 

  25. O. M. Lyulin, D. Mondelain, S. Beguier, et al., “Highsensitivity CRDS absorption spectrum of acetylene between 5851 and 6341 cm–1,” Mol. Phys. 112, 2433–2444 (2014).

    Article  Google Scholar 

  26. S. Beguier, S. Mikhailenko, and A. Campargue, “The absorption spectrum of water between 13540 and 14070 cm–1: ICLAS detection of weak lines and a complete line list,” J. Mol. Spectrosc. 265, 106–109 (2011).

    Article  Google Scholar 

  27. A. W. Liu, S. Kassi, V. I. Perevalov, et al., “High sensitivity CW-cavity ring down spectroscopy of N2O near 1.28 µm,” J. Mol. Spectrosc. 267, 191–199 (2011).

    Article  Google Scholar 

  28. S. Mikhailenko, S. Kassi, L. Wang, and A. Campargue, “The absorption spectrum of water in the 1.25 µm transparency window (7408–7920 cm–1),” J. Mol. Spectrosc. 269, 92–103 (2011).

    Article  Google Scholar 

  29. Y. Lu, D. Mondelain, A. W. Liu, et al., “I. Line positions,” J. Quant. Spectrosc. Radiat. Transfer 113 (10), 749–762 (2012).

  30. D. Jacquemart, F. Gueye, O. M. Lyulin, et al., “Infrared spectroscopy of CO2 isotopologues from 2200 to 7000 cm–1: I. Characterizing experimental uncertainties of positions and intensities,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 961–975 (2012).

    Article  Google Scholar 

  31. O. M. Leshchishina, O. V. Naumenko, and A. Campargue, “High sensitivity ICLAS of H2 18O in the 12580–13550 cm–1 transparency window,” J. Quant. Spectrosc. Radiat. Transfer 112, 913–924 (2011).

    Article  Google Scholar 

  32. O. M. Leshchishina, O. V. Naumenko, and A. Campargue, “High sensitivity ICLAS of H2 18O between 13540 and 14100 cm–1,” J. Mol. Spectrosc. 268, 28–36 (2011).

    Article  Google Scholar 

  33. O. Leshchishina, S. Mikhailenko, D. Mondelain, et al., “CRDS of water vapor at 0.1 torr between 6886 and 7406 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 113 (17), 2155–2166 (2012).

    Article  Google Scholar 

  34. O. Leshchishina, S. Mikhailenko, D. Mondelain, et al., “An improved line list for water vapor in the 1.5 µm transparency window by highly sensitive CRDS between 5852 and 6607 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 130, 69–80 (2013).

    Article  Google Scholar 

  35. A. A. Lukashevskaya, O. V. Naumenko, A. Perrin, et al., “High sensitivity cavity ring down spectroscopy of NON2 between 7760 and 7917 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 130, 249–259 (2013).

    Article  Google Scholar 

  36. E. V. Karlovets, Y. Lu, D. Mondelain, et al., “I. Line intensities,” J. Quant. Spectrosc. Radiat. Transfer 117, 81–87 (2013).

  37. E. V. Karlovets, S. Kassi, S. A. Tashkun, et al., “High sensitivity cavity ring down spectroscopy of carbon dioxide in the 1.19–1.26 µm region,” J. Quant. Spectrosc. Radiat. Transfer 144, 137–153 (2014).

    Article  Google Scholar 

  38. C. Oudot, L. Regalia, S. Mikhailenko, et al., “Fourier transform measurements of H2 18O and HD18O in the spectral range 1000–2300 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 859–869 (2012).

    Article  Google Scholar 

  39. L. Régalia, C. Oudot, S. Mikhailenko, et al., “Water vapor line parameters from 6450 to 9400 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 136, 119–136 (2014).

    Article  Google Scholar 

  40. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  Google Scholar 

  41. S. A. Tashkun and V. I. Perevalov, “CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).

    Article  Google Scholar 

  42. M. Rey, A. V. Nikitin, and Vl. G. Tyuterev, “Theoretical hot methane line lists up to T = 2000 K for astrophysical applications,” Astrophys. J. 789 (1), 2 (2014).

    Article  Google Scholar 

  43. N. N. Lavrentieva, B. A. Voronin, O. V. Naumenko, et al., “Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars),” Icarus 236, 38–47 (2014).

    Article  Google Scholar 

  44. Yu. L. Babikov, S. N. Mikhailenko, A. Barbe, and Vl. G. Tyuterev, “S&MPO—An information system for ozone spectroscopy on the Web,” J. Quant. Spectrosc. Radiat. Transfer 145, 169–196 (2014).

    Article  Google Scholar 

  45. J. Tennyson, P. F. Bernath, L. R. Brown, et al., “IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part III: Energy levels and transition wavenumbers for H216O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).

    Article  Google Scholar 

  46. J. Tennyson, P. F. Bernath, L. R. Brown, et al., “IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part IV: Energy levels and transition wavenumbers for D216O, D217O, and D218O,” J. Quant. Spectrosc. Radiat. Transfer 142, 93–108 (2014).

    Article  Google Scholar 

  47. J. Tennyson, A. Campargue, P. F. Bernath, et al., “A database of water transitions from experiment and theory (IUPAC technical report),” Pure Appl. Chem. 86, 71–83 (2014).

    Google Scholar 

  48. T. Yu. Chesnokova, V. Boudon, T. Gabard, et al., “Near-infrared radiative transfer modelling with different CH4 spectroscopic databases to retrieve atmospheric methane total amount,” J. Quant. Spectrosc. Radiat. Transfer 112, 2676–2682 (2011).

    Article  Google Scholar 

  49. T. Yu. Chesnokova, “Spectroscopic factors, influencing the accuracy of the atmospheric radiative transfer simulation in the methane absorption bands in the near infrared region,” Atmos. Oceanic Opt. 26 (5), 417–426 (2013).

    Article  Google Scholar 

  50. K. Yu. Osipov, A. E. Protasevich, V. A. Kapitanov, and Ya. Ya. Ponurovskii, “Collision parameters of N2-broadened methane lines in R5 multiplet of 2-3 band. multispectrum fitting of overlapping spectral lines,” Appl. Phys. B 106 (3), 725–732 (2012).

    Article  Google Scholar 

  51. V. A. Kapitanov, K. Yu. Osipov, A. E. Protasevich, and Yu. N. Ponomarev, “Collisional parameters of N2-broadened methane lines in the R9 multiplet of the 2–3 band multispectrum fittings of the overlapping spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 113 (16), 1985–1992.

  52. A. V. Chentsov, Yu. V. Voronina, and T. Yu. Chesnokova, “Atmospheric transmission simulation with different CO2 absorption line profiles,” Opt. Atmos. Okeana 26 (9), 711–715 (2013).

    Google Scholar 

  53. T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V. Voronina, et al., “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberia,” Atmos. Oceanic Opt. 25 (2), 147–153 (2012).

    Article  Google Scholar 

  54. T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Oceanic Opt. 26 (6), 499–506 (2013).

    Article  Google Scholar 

  55. T. B. Zhuravleva, S. M. Sakerin, T. V. Bedareva, et al., “Solar radiative fluxes in the clear-sky atmosphere of Western Siberia: A comparison of simulations with field measurements,” Atmos. Oceanic Opt. 27 (2), 176–186 (2014).

    Article  Google Scholar 

  56. K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga region,” Atmos. Oceanic Opt. 28 (1), 1–8 (2015).

    Article  Google Scholar 

  57. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, et al., “Spatial and temporal variability of total solar radiation in West Siberia,” Opt. Atmos. Okeana 26 (8), 659–664 (2013).

    Google Scholar 

  58. B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Long-term monitoring of total and UV-B radiation in Tomsk,” Atmos. Oceanic Opt. 25 (4), 281–285 (2012).

    Article  Google Scholar 

  59. B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Urban influence on the incoming UV radiation from results of long-term monitoring near Tomsk,” Opt. Atmos. Okeana 24 (12), 1113–1119 (2011).

    Google Scholar 

  60. G. A. Ivlev, B. D. Belan, and V. M. Dorokhov, “Dynamics of solar UV-B and UV-A radiations in Tomsk during ozone anomaly in spring 2011,” Opt. Atmos. Okeana 26 (11), 995–1004 (2013).

    Google Scholar 

  61. E. Yu. Zhdanova and N. E. Chubarova, “Estimation of different atmospheric parameters impact on biologically active UV irradiance according to calculations and measurements,” Opt. Atmos. Okeana 24 (9), 775–781 (2011).

    Google Scholar 

  62. N. Chubarova and Y. Zhdanova, “Ultraviolet resources over Northern Eurasia,” J. Photochem. Photobiol. 127, 38–51 (2013).

    Article  Google Scholar 

  63. E. Yu. Zhdanova, N. E.Chubarova, and M. Blumthaler, “Biologically active UV-radiation and UV-resources in Moscow (1999–2013),” Geogr. Environ. Sustainability, No. 2, 71–85 (2014).

    Article  Google Scholar 

  64. N. E. Chubarova, E. I. Nezval’, I. B. Belikov, et al., “Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years,” Russ. Meteorol. Hydrol. 39 (9), 602–613 (2014).

    Article  Google Scholar 

  65. E. V. Gorbarenko and O. A. Shilovtseva, “Helioenergy resources of Moscow,” Al’tern. Energ. Ekol. 6 (2), 28–35 (2013).

    Google Scholar 

  66. E. A. Samukova, E. V. Gorbarenko, and A. E. Erokhina, “Long-term variations of solar radiation in Europe,” Russ. Meteorol. Hydrol., 39 (8), 514–520 (2014).

    Article  Google Scholar 

  67. E. V. Gorbarenko and G. M. Abakumova, “Radiation balance variations of underlying surface from the longterm observations of the Meteorological Observatory of the Moscow State University,” Russ. Meteorol. Hydrol., 36 (6), 383–381 (2011).

    Article  Google Scholar 

  68. E. V. Gorbarenko, “Long-term variations of long-wave radiation in Moscow,” Russ. Meteorol. Hydrol., 38 (10), 669–676 (2013).

    Article  Google Scholar 

  69. R. F. Rakhimov, V. S. Kozlov, and V. P. Shmargunov, “On time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixed-composition smokes,” Atmos. Oceanic Opt. 24 (1), 51–61 (2012).

    Article  Google Scholar 

  70. R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, et al., “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Oceanic Opt. 27 (3), 275–282 (2014).

    Article  Google Scholar 

  71. M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, et al., “Multiyear variations in aerosol condensation activity in Tomsk,” Atmos. Oceanic Opt. 25 (4), 251–255 (2012).

    Article  Google Scholar 

  72. E. F. Mikhailov, V. V. Merkulov, S. S. Vlasenko, et al., “Filter-based differential hygroscopicity analyzer of aerosol particles,” Izv., Atmos. Ocean. Phys. 47 (6), 747–759 (2011).

    Article  Google Scholar 

  73. E. Mikhailov, S. Vlasenko, D. Rose, and U. Pöschl, “Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake,” Atmos. Chem. Phys. 13 (2), 717–740 (2013).

    Article  Google Scholar 

  74. M. A. Sviridenkov, K. S. Verichev, S. S. Vlasenko, et al., “Retrieval of atmospheric aerosol parameters from data of a three-wavelength integrating nephelometer,” Atmos. Oceanic Opt. 27 (3), 230–236 (2014).

    Article  Google Scholar 

  75. A. N. Rublev, I. A. Gorchakova, and T. A. Udalova, “The effect that coarse particles have on estimates of both optical and radiation characteristics of dust aerosol,” Izv., Atmos. Ocean. Phys. 47 (2), 190–200 (2011).

    Article  Google Scholar 

  76. A. N. Rublev, Yu. V. Vlasova, and E. V. Gorbarenko, “Specifying the atmospheric pollutant distribution forecast using the mathematical modeling and measurement data,” Russ. Meteorol. Hydrol. 38 (5), 320–328 (2013).

    Article  Google Scholar 

  77. N. Chubarova, A. Smirnov, and B. N. Holben, “Aerosol properties in Moscow according to 10 years of AERONET measurements at the Meteorological Observatory of Moscow State University,” Geogr. Environ. Sustainability 4 (1), 19–32 (2011).

    Google Scholar 

  78. G. G. Matvienko, B. D. Belan, M. V. Panchenko, et al., “Instrumentation complex for comprehensive study of atmospheric parameters,” Int. J. Remote Sens. 35 (15), 5651–5676 (2014).

    Google Scholar 

  79. G. G. Matvienko, B. D. Belan, M. V. Panchenko, et al., “Complex experiment on the study of microphysical, chemical and optical properties of aerosol particles and estimation of atmospheric aerosol contribution in the earth radiation budget,” Proc. SPIE–Int. Soc. Opt. Eng. 9292 (2014), doi 10.1117/12.207550710.1117/ 12.2075507

    Google Scholar 

  80. V. V. Pol’kin, Vas. V. Pol’kin, L. P. Golobokova, et al., “On the interannual variability of the latitudinal distribution of microphysical and chemical parameters of near-water aerosol of Eastern Atlantic in 2006–2010,” Opt. Atmos. Okeana 26 (6), 519–524 (2013).

    Google Scholar 

  81. D. G. Chernov, V. S. Kozlov, M. V. Panchenko, et al., “Specific features of variability of aerosol and black carbon concentrations in the atmospheric surface layer of Barentsburg (Spitsbergen) in 2011–2013,” Probl. Arkt. Antarkt., No. 4, 34–44 (2014).

    Google Scholar 

  82. E. N. Rusina, V. F. Radionov, and E. E. Sibir, “Variability of aerosol-optical parameters in the atmosphere of northern and southern polar regions since 2000,” Probl. Arkt. Antark 95 (1), 5160 (2013).

    Google Scholar 

  83. V. V. Pol’kin, Vas. V. Pol’kin, and M. V. Panchenko, “Annual variations of aerosol microphysical properties of at the Vostok station in 2009 and 2011,” Opt. Atmos. Okeana 25 (11), 963–967 (2012).

    Google Scholar 

  84. V. V. Pol’kin, D. M. Kabanov, S. M. Sakerin, and L. P. Golobokova, “Comparative studies of optical and microphysical characteristics and chemical composition of aerosol over water basin of Caspian Sea in the 29th and 41st cruises of RV Rift,” Atmos. Oceanic Opt. 27 (1), 16–23 (2014).

    Article  Google Scholar 

  85. V. V. Pol’kin, V. S. Kozlov, Yu. S. Turchinovich, and V. P. Shmargunov, “Comparative analysis of aerosol microphysical characteristics in marine and coastal areas of Primorye,” Opt. Atmos. Okeana 24 (6), 538–546 (2011).

    Google Scholar 

  86. K. A. Shmirko, A. N. Pavlov, S. Yu. Stolyarchuk, et al., “Variations in aerosol microphysical parameters of the surface air layer in the “ocean-continent” transitional zone,” Atmos. Oceanic Opt. 27 (1), 24–32 (2014).

    Article  Google Scholar 

  87. Study of Radiation Characteristics of Aerosol in the Asian Part of Russia, Ed. by S. M. Sakerin (IOA SO RAN, Tomsk, 2012) [in Russian].

  88. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, et al., “Atmospheric aerosol optical depth in Far East Primorye according to data of satellite and ground-based observations,” Opt. Atmos. Okeana 24 (8), 654–660 (2011).

    Google Scholar 

  89. D. M. Kabanov, T. R. Kurbangaliev, T. M. Rasskazchikova, et al., “The influence of synoptic factors on variations of atmospheric aerosol optical depth under Siberian conditions,” Atmos. Oceanic Opt. 24 (6), 543–553 (2011).

    Article  Google Scholar 

  90. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, and D. M. Kabanov, “Specific features of the spatial distribution of the atmospheric aerosol optical depth in the Asian part of Russia,” Opt. Atmos. Okeana 25 (6), 484–490 (2012).

    Google Scholar 

  91. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, et al., “Spatiotemporal variations in the atmospheric aerosol optical depth on the territory of Povolzhye, Urals, and Western Siberia,” Opt. Atmos. Okeana 25 (11), 958–962 (2012).

    Google Scholar 

  92. S. M. Sakerin, N. I. Vlasov, D. M. Kabanov, et al., “Results of spectral measurements of atmospheric aerosol optical depth with sun photometers in the 58th Russian Antarctic Expedition,” Atmos. Oceanic Opt. 27 (5), 393–402 (2014).

    Article  Google Scholar 

  93. S. M. Sakerin, S. Yu. Andreev, D. M. Kabanov, et al., “On results of studies of atmospheric aerosol optical depth in arctic regions,” Atmos. Oceanic Opt. 27 (6), 517–528 (2014).

    Article  Google Scholar 

  94. C. Tomasi, A. Lupi, M. Mazzola, et al., “An update of the long-term trend of aerosol optical depth in the polar regions using POLAR-AOD measurements performed during the International Polar Year,” Atmos. Environ. 52, 29–47 (2012).

    Article  Google Scholar 

  95. A. Smirnov, A. M. Sayer, B. N. Holben, et al., “Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network,” Atmos. Meas. Tech., 5 (2), 377–388 (2012).

    Article  Google Scholar 

  96. N. Chubarova, E. Nezval’, I. Sviridenkov et al., “Smoke aerosol and its radiative effects during extreme fire event over central Russia in summer 2010,” Atmos. Meas. Tech. 5 (3), 557–568 (2012).

    Article  Google Scholar 

  97. I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).

    Article  Google Scholar 

  98. A. V. Trefilova, M. S. Artamonova, T. M. Kuderina, et al., “Chemical composition and microphysical characteristics of atmospheric aerosol over Moscow and its vicinity in June 2009 and during the fire peak of 2010,” Izv., Atmos. Ocean. Phys. 49 (7), 765–772 (2013).

    Article  Google Scholar 

  99. K. A. Shukurov, I. I. Mokhov, and L. M. Shukurova, “Estimate for radiative forcing of smoke aerosol from 2010 summer fires based on measurements in the Moscow region,” Izv., Atmos. Ocean. Phys. 50 (3), 256–265 (2014).

    Article  Google Scholar 

  100. N. E. Chubarova, E. V. Gorbarenko, E. I. Nezval’, and O. A. Shilovtseva, “Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow,” Izv., Atmos. Ocean. Phys. 47 (6), 729–738 (2011).

    Article  Google Scholar 

  101. V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, et al., “Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  102. R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, et al., “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Oceanic Opt. 27 (3), 275–282 (2014).

    Article  Google Scholar 

  103. T. V. Bedareva and T. B. Zhuravleva, “Retrieval of aerosol scattering phase function and single scattering albedo according to data of radiation measurements in solar almucantar: Numerical simulation,” Atmos. Oceanic Opt. 24 (4), 373–384 (2011).

    Article  Google Scholar 

  104. T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data from ground-based spectral measurements of direct and diffuse solar radiation. Part 1. Testing of algorithm,” Atmos. Oceanic Opt. 26 (1), 24–34 (2013).

    Article  Google Scholar 

  105. T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of dust aerosol optical and microphysical properties from ground-based sun-sky radiometer measurements in approximation of randomly oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 146, 140–157 (2014).

    Article  Google Scholar 

  106. T. V. Bedareva and T. B. Zhuravleva, “Estimation of aerosol absorption under summer conditions of Western Siberia from sun photometer data,” Atmos. Oceanic Opt. 25 (3), 216–223 (2012).

    Article  Google Scholar 

  107. T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data from ground-based spectral measurements of direct and diffuse solar radiation. Part 2. Algorithm testing,” Atmos. Oceanic Opt. 26 (2), 107–117 (2013).

    Article  Google Scholar 

  108. M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, et al., “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  109. M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, et al., “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  110. Yu. A. Pkhalagov, V. N. Uzhegov, V. S. Kozlov, et al., “Retrieval of the aerosol extinction coefficients on a long near-ground path from data on the aerosol parameters in a local volume,” Opt. Atmos. Okeana 26 (6), 478–483 (2013).

    Google Scholar 

  111. I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv. Atmos. Ocean. Phys. 49 (5), 461–478 (2013).

    Article  Google Scholar 

  112. I. L. Karol’, A. A. Kiselev, and V.A. Frol’kis, “Indices of the factors that form climate changes of different scales,” Izv., Atmos. Ocean. Phys. 47 (4), 415–429 (2011).

    Article  Google Scholar 

  113. I. L. Karol’, A. A. Kiselev, and V. A. Frol’kis, “Radiation indices of climate-forming factors and their estimates under anthropogenic climate changes,” Russ. Meteorol. Hydrol., 37 (5), 298–306 (2012).

    Article  Google Scholar 

  114. I. L. Karol’, V. P. Meleshko, A. V. Baidin, and A. A. Kiselev, “Radiation and thermodynamic seasonal factors of the Arctic climate change,” Probl. Arkt. Antarkt., No. 3, 5–12 (2014).

    Google Scholar 

  115. V. A. Frol’kis and A. M. Kokorin, “Effect of different representations of two-phase stratospheric aerosol particles and their size distributions on optical parameters and radiative forcing,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 571, 88–113 (2014).

    Google Scholar 

  116. A. A. Cheremisin and A. V. Kushnarenko, “Photophoretic interaction of aerosol particles and its effect on coagulation in rarefied gas medium,” J. Aeros. Sci. 62, 26–39 (2013).

    Article  Google Scholar 

  117. A. A. Cheremisin and A. V. Kushnarenko, “Photophoretic interaction of aerosol particles and its effect on coagulation in the atmosphere,” Opt. Atmos. Okeana 27 (12), 1090–1098 (2014).

    Google Scholar 

  118. S. A. Beresnev, L. B. Kochneva, T. B. Zhuravleva, and K. M. Firsov, “Photophoretic motion of soot aerosols in field of shortwave solar radiation,” Atmos. Oceanic Opt. 25 (4), 286–291 (2012).

    Article  Google Scholar 

  119. A. A. Cheremisin, I. S. Shnipov, H. Horvath, and H. Rohatschek, “The global picture of aerosol layers formation in the stratosphere and in the mesosphere under the influence of gravito–photophoretic and magneto–photophoretic forces,” J. Geophys. Res. 116, D19204 (2011), doi 10.1029/2011JD015958

    Article  Google Scholar 

  120. A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, et al., “Lidar observations and formation mechanism of the structure of stratospheric and mesospheric aerosol layers over Kamchatka,” Geomagn. Aeron. 52 (5), 653–663 (2012).

    Article  Google Scholar 

  121. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Lidar observations of volcanic aerosol content in the atmosphere over Tomsk,” Russ. Meteorol. Hydrol. 36 (9), 600–607 (2011).

    Article  Google Scholar 

  122. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Transport of polar stratospheric clouds from the arctic to Tomsk in January 2010,” Atmos. Oceanic Opt. 26 (6), 492–498 (2013).

    Article  Google Scholar 

  123. V. N. Ivanov, D. S. Zubachev, V. A. Korshunov, et al., “Lidar observations of stratospheric aerosol traces of the Chelyabinsk meteorite,” Opt. Atmos. Okeana 27 (2), 117–122 (2014).

    Google Scholar 

  124. M. V. Makarova, A. V. Poberovskii, and S. I. Osipov, “Time variations of the total CO content in the atmosphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47 (6), 739–746 (2011).

    Article  Google Scholar 

  125. A. V. Polyakov, Yu. M. Timofeev, A. V. Poberovskii, and I. S. Yagovkina, “Seasonal variations in the total content of hydrogen fluoride in the atmosphere,” Izv., Atmos. Ocean. Phys. 47 (6), 760–765 (2011).

    Article  Google Scholar 

  126. Ya. A. Virolainen, Yu. M. Timofeev, D. V. Ionov, et al., “Ground-based measurements of total ozone content by the infrared method,” Izv., Atmos. Ocean. Phys. 47 (4), 480–490 (2011).

    Article  Google Scholar 

  127. I. S. Yagovkina, A. V. Polyakov, A. V. Poberovskii, and Yu. M. Timofeev, “Spectroscopic measurements of total CFC-11 freon in the atmosphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47 (2), 186–189 (2011).

    Article  Google Scholar 

  128. M. A. Kshevetskaya, A. V. Poberovskii, and Yu. M. Timofeev, “Measurements of N2O total column amount in the vicinity of St. Petersburg,” Opt. Atmos. Okeana 25 (1), 75–79 (2012).

    Google Scholar 

  129. A. V. Polyakov, Yu. M. Timofeev, and A. V. Poberovskii, “Ground-based measurements of total column of hydrogen chloride in the atmosphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 49 (4), 411–419 (2013).

    Article  Google Scholar 

  130. S. G. Semakin, A. V. Poberovskii, and Yu. M. Timofeev, “Ground-based spectroscopic measurements of the total nitric acid content in the atmosphere,” Izv., Atmos. Ocean. Phys. 49 (3), 294–297 (2013).

    Article  Google Scholar 

  131. A. V. Rakitin, A. V. Poberovskii, Yu. M. Timofeev, et al., “Variations in the column-average dry-air mole fractions of CO2 in the vicinity of St. Petersburg,” Izv., Atmos. Ocean. Phys. 49 (3), 271–275 (2013).

    Article  Google Scholar 

  132. D. V. Ionov, M. A. Kshevetskaya, Yu. M. Timofeev, and A. V. Poberovskii, “Stratospheric NON2 content according to data from ground-based measurements of solar IR radiation,” Izv., Atmos. Ocean. Phys. 49 (5), 519–529 (2013).

    Article  Google Scholar 

  133. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Poberovskii, “Ground-based measurements of HF total column abundances in the stratosphere near St. Petersburg (2009–2013),” Izv., Atmos. Ocean. Phys. 50 (6), 595–601 (2014).

    Article  Google Scholar 

  134. A. V. Polyakov, Yu. M. Timofeev, and K. A. Walker, “Comparison of the satellite and ground-based measurements of the hydrogen fluoride content in the atmosphere,” Izv., Atmos. Ocean. Phys. 49 (9), 1002–1005 (2013).

    Article  Google Scholar 

  135. N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Comparisons of CH4 groundbased FTIR measurements near Saint Petersburg with GOSAT observations,” Atmos. Meas. Tech. 7 (4), 1003–1010 (2014).

    Article  Google Scholar 

  136. N. M. Gavrilov and Yu. M. Timofeev, “Comparison of satellite (GOSAT) and ground-based spectroscopic measurements of CO2 content near St. Petersburg,” Izv., Atmos. Ocean. Phys. 50 (9), 910–915 (2014).

    Article  Google Scholar 

  137. M. V. Makarova, N. M. Gavrilov, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison of satellite (GOSAT) and ground-based Fourier spectroscopic measurements of methane content near St. Petersburg,” Izv., Atmos. Ocean. Phys. 50 (9), 904–909 (2014).

    Article  Google Scholar 

  138. N. M. Gavrilov, M. V. Makarova, Y. M. Timofeev, and A. V. Poberovskii, “Comparisons of satellite (GOSAT) and ground-based spectroscopic measurements of CH4 content near Saint Petersburg: Influence of data collocation,” Int. J. Remote Sens. 35 (15), 5628–5636 (2014).

    Google Scholar 

  139. M. Makarova, O. Kirner, A. Poberovskii, et al., “Atmospheric methane variability at the Peterhof station (Russia): Ground-based observations and modeling,” Geophys. Res. Abs. 16, EGU2014–7623 (2014).

    Google Scholar 

  140. Y. Virolainen, M. Makarova, D. Ionov, et al., “Comparison of ground-based FTIR measurements and EMAC model simulations of trace-gases columns near St. Petersburg (Russia) in 2009–2013,” Geophys. Res. Abs. 16, EGU2014–8050 (2014).

    Google Scholar 

  141. Ya. A. Virolainen, Yu. M. Timofeev, D. V. Ionov, et al., “The ozone vertical structure determining from ground-based Fourier spectrometer solar IR radiation measurements,” Geophys. Res. Abs. 14, EGU2012–896 (2012).

    Google Scholar 

  142. Y. Virolainen, M. Eremenko, Y. Timofeyev, et al., “Measurements of ozone columns in different atmospheric layers over St. Petersburg (Russia) using ground-based FTIR spectrometer in comparison with IASI satellite data,” Geophys. Res. Abs. 16, EGU2014–11353 (2014).

    Google Scholar 

  143. A. O. Semenov, Ya. A. Virolainen, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison of ground-based FTIR and radio sounding measurements of water vapor total content,” Atmos. Oceanic Opt. 28 (2), 121–125 (2015).

    Article  Google Scholar 

  144. M. V. Makarova, A. V. Rakitin, D. V. Ionov, and A. V. Poberovskii, “Analysis of variability of the CO, NON2, and O3 contents in the troposphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47 (4), 468–479 (2011).

    Article  Google Scholar 

  145. D. V. Ionov and A. V. Poberovskii, “Nitrogen dioxide in the air basin of St. Petersburg: Remote measurements and numerical simulation,” Izv., Atmos. Ocean. Phys. 48 (4), 373–383 (2012).

    Article  Google Scholar 

  146. F. Hendrick, J.-P. Pommereau, F. Goutail, et al., “NDACC/SAOZ UV-visible total ozone measurements: Improved retrieval and comparison with correlative ground-based and satellite observations,” Atmos. Chem. Phys. 12 (11), 5975–5995 (2011).

    Article  Google Scholar 

  147. Y. A. Virolainen, Y. Timofeev, A. Polyakov, et al., “Intercomparison of satellite and ground-based measurements of ozone, NON2, HF, and HCl near Saint Petersburg, Russia,” Int. J. Remote Sens. 35 (15), 5677–5697 (2014).

    Google Scholar 

  148. M. Pastel, J.-P. Pommereau, F. Goutail, et al., “Comparison of long-term series of total ozone and NON2 column measurements in the southern tropics by SAOZ/NDACC UV-Vis spectrometers and satellites,” Atmos. Meas. Tech. Discuss. 6, 4851–4893 (2013).

    Article  Google Scholar 

  149. M. Pastel, J.-P. Pommereau, F. Goutail, et al., “Construction of merged satellite total O3 and NON2 time series in the tropics for trend studies and evaluation by comparison to NDACC SAOZ measurements,” Atmos. Meas. Tech. 7, 3337–3354 (2014).

    Article  Google Scholar 

  150. N. A. Zaitsev, Yu. M. Timofeev, and V. S. Kostsov, “Comparison of radio sounding and ground-based remote measurements of temperature profiles in the troposphere,” Atmos. Oceanic Opt. 27 (5), 386–392 (2014).

    Article  Google Scholar 

  151. V. S. Kostsov, A. V. Poberovskii, S. I. Osipov, and Yu.M. Timofeev, “Multiparameter technique for interpreting ground-based microwave spectral measurements in the problem of ozone vertical profile retrieval,” Atmos. Oceanic Opt. 25 (4), 269–275 (2012).

    Article  Google Scholar 

  152. V. Kostsov, “General approach to the formulation and solution of the multi-parameter inverse problems of atmospheric remote sensing,” AIP Conf. Proc. 1531, 240–243 (2013).

    Article  Google Scholar 

  153. V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, et al., “Variations of the total content of carbon monoxide over Moscow megapolis,” Izv., Atmos. Ocean. Phys. 47 (1), 59–66 (2011).

    Article  Google Scholar 

  154. N. V. Pankratova, N. F. Elansky, I. B. Belikov, et al., “Ozone and nitric oxides in the surface air over northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).

    Article  Google Scholar 

  155. E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, et al., “Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).

    Article  Google Scholar 

  156. N. F. Elansky, I. I. Mokhov, I. B. Belikov, et al., “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).

    Article  Google Scholar 

  157. A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).

    Article  Google Scholar 

  158. K. G. Gribanov, V. I. Zakharov, S. A. Beresnev, et al., “Sensing HDO/H2O in the Ural’s atmosphere using ground-based measurements of IR solar radiation with a high spectral resolution,” Atmos. Oceanic Opt. 24 (4), 369–372 (2011).

    Article  Google Scholar 

  159. L. P. Bass, O. V. Nikolaeva, and V. S. Kuznetsov, “Remote sensing of the atmosphere and the small angle approximation to the solution of the radiative transfer equation,” Int. J. Remote Sens. 35 (15), 5830–5844 (2014).

    Google Scholar 

  160. E. N. Kadygrov, Yu. V. Agapov, A. G. Gorelik, et al., “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmos. Okeana 26 (6), 459–465 (2013).

    Google Scholar 

  161. E. N. Kadygrov, A. G. Gorelik, and T. A. Tochilkina, “Study of liquid water in clouds with the Microradkom radiometric system,” Atmos. Oceanic Opt. 27 (6), 596–604 (2014).

    Article  Google Scholar 

  162. I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana 25 (10), 877–883 (2012).

    Google Scholar 

  163. G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, et al., “The Moscow heat island in the blocking anticyclone during summer 2010,” Dokl. Earth Sci. 456 (2), 736–740 (2014).

    Article  Google Scholar 

  164. I. N. Ezau, T. Wolf, E. A. Miller, et al., “The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway),” Russ. Meteorol. Hydrol. 38 (10), 715–724 (2013).

    Article  Google Scholar 

  165. E. N. Kadygrov, E. A. Miller, and A. V. Troitsky, “Study of atmospheric boundary layer thermodynamics during total solar eclipses,” IEEE Trans. Remote Sens. 51 (9), 4672–4677 (2013).

    Article  Google Scholar 

  166. V. Yu. Zhukov and G. G. Shchukin, “The state and prospects of the network of Doppler Weather Radars,” Russ. Meteorol. Hydrol. 39 (2), 126–131 (2014).

    Article  Google Scholar 

  167. E. K. Kramchaninova and A. B. Uspenskii, “Determination of near-surface air temperature over the ground from microwave sounding data obtained by the Meteor-M no. 1 artificial satellite of the Earth,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (3), 127–136 (2012).

    Google Scholar 

  168. D. M. Karavaev, Yu. V. Kuleshov, A. B. Uspenskii, and G. G. Shchukin, “Validation of data products of microwave satellite radiometers,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (3), 259–267 (2014).

    Google Scholar 

  169. V. V. Asmus, V. N. Dyadyuchenko, V. A. Zagrebaev, et al., “Development of the space system of hydrometeorological support on the basis of geostationary satellites of Elektro-L series,” Vestn. NPO Im. S. A. Lavochkina. Kosmonavtika Raketostroenie 12 (1), 3–14 (2012).

    Google Scholar 

  170. A. B. Uspensky and A. N. Rublev, “The current state and prospects of satellite hyperspectral atmospheric sounding,” Izv., Atmos. Ocean. Phys. 50 (9), 892–903 (2014).

    Article  Google Scholar 

  171. A. B. Uspensky, A. N. Rublev, E. V. Rusin, and V. P. Pyatkin, “A fast radiative transfer model for the “Meteor-M” satellite-based hyperspectral IR sounders,” Izv., Atmos. Ocean. Phys. 50 (9), 968–977.

  172. A. V. Polyakov, “The method of artificial neural networks in retrieving vertical profiles of atmospheric parameters,” Atmos. Oceanic Opt. 27 (3), 247–252 (2014).

    Article  Google Scholar 

  173. A. V. Polyakov, Yu. M. Timofeev, and Ya. A. Virolainen, “Using artificial neural networks in the temperature and humidity sounding of the atmosphere,” Izv., Atmos. Ocean. Phys. 50 (3), 330–336 (2014).

    Article  Google Scholar 

  174. A. Polyakov, Y. M. Timofeev, and Y. Virolainen, “Comparison of different techniques in atmospheric temperature–humidity sensing from space,” Int. J. Remote Sens. 35 (15), 5899–5912 (2014).

    Google Scholar 

  175. A. Polyakov, Y. Timofeev, V. Kostsov, et al., “The atmospheric and surface sounding from the meteor satellite (numerical simulation),” AIP Conf. Proc. 1531, 224–227 (2013).

    Article  Google Scholar 

  176. E. K. Kramchaninova and A. B. Uspensky, “Monitoring the total atmospheric ozone content using data collected by the Elektro-L Russian geostationary meteorological satellite,” Izv., Atmos. Ocean. Phys. 49 (9), 968–992 (2013).

    Article  Google Scholar 

  177. G. A. Avanesov, I. V. Polyansky, B. S. Zhukov, et al., “Multispectral satellite imaging system aboard the Meteor-M No. 1 spacecraft: three years in orbit.,” Izv., Atmos. Ocean. Phys. 2 (9), 1057–1068 (2013).

    Article  Google Scholar 

  178. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, et al., “Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012,” Izv., Atmos. Oceanic Physics 50 (9), 916–928 (2014).

    Article  Google Scholar 

  179. A. B. Uspensky, A. V. Kukharsky, S. V. Romanov, and A. N. Rublev, “Monitoring the carbon dioxide mixing ratio in the troposphere and the methane total column over Siberia according to the data of the AIRS and IASI IR sounders,” Izv., Atmos. Oceanic Phys. 47 (9), 1097–1103 (2011).

    Article  Google Scholar 

  180. S. A. Sitnov, “Analysis of satellite observations of the tropospheric NON2 content over the Moscow region,” Izv., Atmos. Ocean. Phys. 47 (2), 166–185 (2011).

    Article  Google Scholar 

  181. I. B. Konovalov, “Estimation of multiyear changes in nitrogen oxide emissions in megalopolises from satellite measurements,” Izv., Atmos. Ocean. Phys. 47 (2), 201–210 (2011).

    Article  Google Scholar 

  182. S. A. Sitnov, “Satellite monitoring of atmospheric gaseous species and optical characteristics of atmospheric aerosol over the European part of Russia in April–September 2010,” Dokl. Earth Sci. 437 (1), 368–373 (2011).

    Article  Google Scholar 

  183. S. A. Sitnov, “Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: Interrelation between the variation in pollutants and meteorological parameters,” Izv., Atmos. Ocean. Phys. 47 (6), 714–728 (2011).

    Article  Google Scholar 

  184. S. A. Sitnov and I. I. Mokhov, “Water-vapor content in the atmosphere over European Russia during the summer 2010 fires,” Izv., Atmos. Ocean. Phys. 49 (4), 380–394 (2013).

    Article  Google Scholar 

  185. S. A. Sitnov, I. I. Mokhov, and A. R. Lupo, “Evolution of water vapor plume over Eastern Europe during summer 2010 atmospheric blocking,” Adv. Meteorol., 253953 (2014), doi 10.1080/01431161.2014.945008

  186. G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, et al., “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

  187. G. I. Gorchakov, M. A. Sviridenkov, E. G. Semutnikova, et al., “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth Sci. 437 (2), 513–517 (2011).

    Article  Google Scholar 

  188. G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, et al., “Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010,” Dokl. Earth Sci. 441 (2), 1666–1672 (2011).

    Article  Google Scholar 

  189. S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, et al., “Aerospace monitoring of smoke aerosol over the European part of Russia in the period of massive forest and peatbog fires in July–August of 2010,” Atmos. Oceanic Opt. 26 (4), 265–280 (2013).

    Article  Google Scholar 

  190. S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, and A. V. Karpov, “Evolution and radiation effects of the extreme smoke pollution over the European part of Russia in the summer of 2010,” Dokl. Earth Sci. 446 (2), 1197–1203 (2012).

    Article  Google Scholar 

  191. S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, et al., “The effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol over European Russia during the summer of 2010,” Izv., Atmos. Ocean. Physics, 49 (9), 1006–1018 (2013).

    Article  Google Scholar 

  192. S. V. Afonin, “Applicability of space-derived meteorological data to atmospheric correction of satellite infrared measurements,” Atmos. Oceanic Opt. 24 (1), 56–63 (2011).

    Article  Google Scholar 

  193. E. V. Volkova, “Using the integrated threshold technique for climatic study of parameters of cloud cover, precipitation, and hazardous weather phenomena according to SEVIRI/Meteosat-9 data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 200–206 (2012).

    Google Scholar 

  194. E. V. Volkova, “Estimates of parameters of cloud cover, precipitation, and hazardous weather phenomena according to data of AVHRR radiometry with a NOAA series satellite on a round-the-clock basis and automatically,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (3), 66–74 (2013).

    Google Scholar 

  195. A. F. Nerushev and E. K. Kramchaninova, “Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites,” Izv., Atmos. Ocean. Phys. 47 (9), 1104–1113 (2011).

    Article  Google Scholar 

  196. A. F. Nerushev and A. E. Barkhatov, “Dynamical characteristics of cyclones at tropical and moderate latitudes according to satellite measurement data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 220–226 (2012).

    Google Scholar 

  197. A. F. Nerushev and D. E. Chechin, “Determination of atmospheric precipitation characteristics from optical satellite measurements,” Issled. Zemli Kosmosa, No. 5, 29–38 (2014).

    Google Scholar 

  198. A. F. Nerushev, “Jet flows in the Earth’s atmosphere,” Zemlya Vselennaya, No. 6, 21–30 (2014).

    Google Scholar 

  199. M. V. Bukharov, “Satellite diagnosis of thunderstorm probability,” Russ. Meteorol. Hydrol., 38 (6), 515–521 (2013).

    Article  Google Scholar 

  200. A. A. Alekseeva and M. V. Bukharov, “Thunderstorm prediction according to synchronous data of microwave and infrared satellite radiometry,” Meteorol. Gidrol., No. 6, 29–37 (2005).

    Google Scholar 

  201. A. A. Alekseeva, M. V. Bukharov, V. M. Losev, and V. I. Solov’ev, “Prediction of precipitation and thunderstorms according to measurements of outgoing heat emission of cloudiness from geostationary satellites,” Meteorol. Gidrol., No. 8, 33–42 (2006).

    Google Scholar 

  202. O. Yu. Lavrova and M. I. Mityagina, “Satellite monitoring of oil Slicks on the Black Sea surface,” Izv., Atmos. Ocean. Phys. 3 (9), 897–912 (2013).

    Article  Google Scholar 

  203. D. A. Petrenko, E. V. Zabolotskikh, D. V. Pozdnyakov, et al., “Interannual variations and trend of the production of inorganic carbon by coccolithophores in the Arctic in 2002–2010 based on satellite Data,” Izv., Atmos. Ocean. Phys. 49 (9), 871–878 (2013).

    Article  Google Scholar 

  204. E. Morozov, D. Pozdnyakov, V. Sychev, et al., “Spaceborne study of seasonal, multi-year, and decadal phytoplankton dynamics in the Bay of Biscay,” Int. J. Remote Sens. 34 (4), 1297–1331 (2013).

    Article  Google Scholar 

  205. D. Petrenko, D. Pozdnyakov, V. Sychov, et al., “Satellite- derived multi-year trend in primary production in the Arctic Ocean,” Int. J. Remote Sens. 34 (11), 3903–3937 (2013).

    Article  Google Scholar 

  206. T. A. Alekseeva and S. V. Frolov, “Comparative analysis of satellite and ship-borne data on ice cover in the Russian Arctic seas,” Izv., Atmos. Ocean. Phys. 49 (9), 879–885 (2013).

    Article  Google Scholar 

  207. M. V. Bukharov, A. V. Kukharskii, N. S. Mironova, and V. I. Solov’ev, “A year-round monitoring of sea ice properties from the AMSU satellite microwave radiometer data,” Russ. Meteorol. Hydrol., 37 (3), 194–202 (2012).

    Article  Google Scholar 

  208. V. V. Asmus, M. V. Bukharov, N. S. Mironova, and E. A. Sizenova, “Properties of the snow-firn cover of Greenlandic glaciers from the satellite measurements of its scattering index,” Russ. Meteorol. Hydrol., 37 (4), 217–225 (2012).

    Article  Google Scholar 

  209. Z. Startseva, E. Muzylev, E. Volkova, et al., “Water and heat regimes modelling for a vast territory using remote-sensing data,” Int. J. Remote Sens. 35 (15), 5775–5799 (2014).

    Google Scholar 

  210. A. Gelfan, E. Muzylev, A. Uspensky, et al., “Remote sensing based modeling of water and heat regimes in a vast agricultural region,” in Remote Sensing—Applications, Ed. by B. Escalante-Ramirez (Rijeka, Croatia: InTech, 2012), Chap. 6, pp. 141–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Timofeev.

Additional information

Original Russian Text © Yu.M. Timofeev, E.M. Shul’gina, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 5, pp. 529–545.

Data provided by L. P. Bass (IAM RAS); V. P. Budak (MPEI); G. I. Gorchakov, I. A. Gorchakova, S. A. Sitnov, M. A. Sviridenkov (IAP RAS); T. B. Zhuravleva, V. I. Perevalov, Yu. N. Ponomarev, S. M. Sakerin, T. K. Sklyadneva, S. A. Terpugova (IAO SB RAS); E. N. Kadygrov (CAO); I. L. Karol’ (MGO); A. F. Nerushev (Typhoon); V. F. Radionov (AARI); A. N. Rublev ( Kurchatov Institute); A. B. Uspenskii (Planeta); A. A. Cheremisin (Siberian Federal University); and N. E. Chubarova (MSU).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, Y.M., Shul’gina, E.M. Russian investigations in the field of atmospheric radiation in 2011–2014. Izv. Atmos. Ocean. Phys. 52, 467–482 (2016). https://doi.org/10.1134/S0001433816050121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816050121

Keywords

Navigation