Skip to main content
Log in

Pseudogap phase formation in the crossover from Bose-Einstein condensation to BCS superconductivity

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A phase diagram for a 2D metal with variable carrier density has been derived. It consists of a normal phase, where the order parameter is absent: a so-called “abnormal normal” phase where this parameter is also absent but the mean number of composite bosons (bound pairs) exceeds the mean number of free fermions; a pseudogap phase where the absolute value of the order parameter gradually increases but its phase is a random value, and finally a superconducting (here Berezinskii-Kosterlitz-Thouless) phase. The characteristic transition temperatures between these phases are found. The chemical potential and paramagnetic susceptibility behavior as functions of the fermion density and the temperature are also studied. An attempt is made to qualitatively compare the resulting phase diagram with the features of underdoped high-T c superconducting compounds above their critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Loktev, Fiz. Nizk. Temp. 22, 3 (1996) [Low Temp. Phys. 22, 1 (1996)].

    Google Scholar 

  2. M. Randeria, Varenna Lectures, 1997, e-print archiv, cond-mat/97 10 223.

  3. Y. J. Uemura, e-print archiv, cond-mat/97 06 151, submitted in Physica C.

  4. M. Randeria, in Bose Einstein Condensation, ed. by A. Griffin, D. W. Snoke, and S. Stringari, Cambridge U. P., New York (1995) p. 355.

    Google Scholar 

  5. R. Haussmann, Phys. Rev. B 49, 12975 (1994).

    Google Scholar 

  6. E. V. Gorbar, V. M. Loktev, and S. G. Sharapov, Physica C 257, 355 (1996).

    Article  ADS  Google Scholar 

  7. E. V. Gorbar, V. P. Gusynin, and V. M. Loktev, Fiz. Nizk. Temp. 19, 1171 (1993) [Low Temp. Phys. 19, 832 (1993)]; Supercond., Phys. Chem. Technol. 6, 375 (1993); Preprint ITP-92-54E, Kiev (1992).

    Google Scholar 

  8. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1113 (1966); P. C. Hohenberg, Phys. Rev. 158, 383 (1967); S. Coleman, Commun. Math. Phys. 31, 259 (1973).

    ADS  Google Scholar 

  9. S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 445 (1989).

    Article  ADS  Google Scholar 

  10. J. Serene, Phys. Rev. B 40, 10873 (1989).

    Google Scholar 

  11. A. Tokumitu, K. Miyake, and K. Yamada, Phys. Rev. B 47, 11988 (1993).

    Google Scholar 

  12. P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  Google Scholar 

  13. S. V. Traven, Phys. Rev. Lett. 73, 3451 (1994).

    Article  ADS  Google Scholar 

  14. R. MacKenzie, P. K. Panigrahi, and S. Sakhi, Int. J. Mod. Phys. A 9, 3603 (1994); Phys. Rev. B 48, 3892 (1993).

    ADS  Google Scholar 

  15. M. Drechsler and W. Zwerger, Ann. Phys. (Germany) 1, 15 (1992).

    Google Scholar 

  16. S. Stintzing and W. Zwerger, Phys. Rev. B 56, 9004 (1997).

    Article  ADS  Google Scholar 

  17. V. M. Loktev and Yu. G. Pogorelov, Physica C 272, 151 (1996).

    Article  ADS  Google Scholar 

  18. D. Pines, J. of Physics 20, 535 (1996).

    Google Scholar 

  19. H. Ding, T. Yokoya, I. C. Campuzano et al., Nature (London) 382, 51 (1996).

    Article  ADS  Google Scholar 

  20. V. P. Gusynin, V. M. Loktev, and S. G. Sharapov, JETP Lett. 65, 182 (1997); Fiz. Nizk. Temp. 23, 1247 (1997) [Low Temp. Phys. 23, 936 (1997)].

    Article  ADS  Google Scholar 

  21. H. Kleinert, Fortschr. Phys. 26, 565 (1978).

    MathSciNet  Google Scholar 

  22. E. Witten, Nucl. Phys. B 145, 110 (1978).

    Article  ADS  Google Scholar 

  23. I. J. R. Aitchison, P. Ao, D. J. Thouless, and X.-M. Zhu, Phys. Rev. B 51, 6531 (1995).

    Article  ADS  Google Scholar 

  24. M. Capezzali, D. Ariosa, and H. Beck, Physica B 230–232, 962 (1997).

    Google Scholar 

  25. Yu. A. Izyumov and Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, [in Russian], Nauka, Moscow (1987), Ch. 15.

    Google Scholar 

  26. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  27. V. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995); Phys. Rev. Lett. 74, 3253 (1995); e-print archiv, cond-mat/97 10 059.

    Article  ADS  Google Scholar 

  28. S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).

    Article  ADS  Google Scholar 

  29. A. M. J. Schakel, Mod. Phys. Lett. B 4, 927 (1990).

    ADS  MathSciNet  Google Scholar 

  30. O. Tchernyshyov, Phys. Rev. B 56, 3372 (1997).

    Article  ADS  Google Scholar 

  31. B. Janko, J. Mali, and K. Levin, Phys. Rev. B 56, 11407 (1997).

  32. J. R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, e-print archiv, cond-mat/97 05 166.

  33. K. Miyake, Prog. Theor. Phys. 69, 1794 (1983).

    Article  ADS  Google Scholar 

  34. H. Yamamoto and I. Ichinose, Nucl. Phys. B 370, 695 (1992).

    Article  ADS  Google Scholar 

  35. V. M. Loktev and S. G. Sharapov, Fiz. Nizk. Temp. 23, 180 (1997) [Low Temp. Phys. 23, 132 (1997)].

    Google Scholar 

  36. M. Casas, J. M. Getino, M. de Llano et al., Phys. Rev. B 50, 15945 (1994).

  37. D. van der Marel, Physica C 165, 35 (1990).

    ADS  Google Scholar 

  38. A. V. Dotsenko and O. P. Sushkov, e-print archiv, cond-mat/96 01 031.

  39. T. P. Devereaux, Phys. Rev. Lett. 74, 4313 (1995).

    Article  ADS  Google Scholar 

  40. C. Kendziora et al., Phys. Rev. Lett. 77, 727 (1996).

    Article  ADS  Google Scholar 

  41. R. Micnas and T. Kostyrko, in Proceedings of the 1st Polish-US Conference, Wroclaw, Poland, 11–15 September (1995).

  42. I. A. Kvasnikov, Thermodynamics and Statistical Physics [in Russian], Moscow University Press, Moscow (1991).

    Google Scholar 

  43. J. J. Deisz, D. W. Hess, and J. W. Serene, e-print archiv, cond-mat/97 06 012.

  44. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover, New York (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 1243–1262 (April 1999)

Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusynin, V.P., Loktev, V.M. & Sharapov, S.G. Pseudogap phase formation in the crossover from Bose-Einstein condensation to BCS superconductivity. J. Exp. Theor. Phys. 88, 685–695 (1999). https://doi.org/10.1134/1.558845

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558845

Keywords

Navigation