Skip to main content
Log in

Dependence of the upper critical field on the defect concentration in MgB2 and the electronic structure parameters

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The upper critical field H c 2 (Hc) of the two-band superconductor MgB2 is studied as a function of the residual resistivity ρn. It is found that the superconductor follows the standard trend: the slope-dH c2/dT of the temperature dependence of H c2(T) increases with the number of defects. The upper critical field in the clean limit is found, and direct estimations of the parameters of carriers in the 2D σ band (including the Fermi velocity and the coherence length) are made. The contribution of the electron scattering to the magnitude of H c2 is determined, and the mean free path of electrons in samples with various defect concentrations is estimated. The density of states of σ electrons at the Fermi level is calculated using the dependence of the slope-dH c2/dT on ρn and a band structure model. It is impossible to estimate this density of states directly, because the upper critical field is determined by the carriers of one band, whereas the resistivity depends on the carriers in both bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimutsu, Nature (London) 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  3. P. Szabo, P. Samuely, J. Kacharcik, T. Klein, J. Marcus, D. Fruchardt, S. Miraglia, C. Marcenat, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001).

    Google Scholar 

  4. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchardt, J. Marcus, and Ph. Monod, Phys. Rev. Lett. 87, 177008 (2001).

    Google Scholar 

  5. H. Schmidt, J. F. Zasadzinski, K. E. Gray, and D. G. Hinks, Physica C 385, 221 (2003).

    Article  ADS  Google Scholar 

  6. F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, and S. Tajima, Phys. Rev. Lett. 89, 257001 (2002).

    Google Scholar 

  7. F. Bouquet, Y. Wang, I. Sheikin, P. Toulemonde, M. Eisterer, H. W. Weber, S. Lee, S. Tajima, and A. Junod, Physica C 385, 192 (2003).

    Article  ADS  Google Scholar 

  8. H. D. Yang, J. Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S. C. Li, R. C. Yu, and C. Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).

    Google Scholar 

  9. J. H. Jung, K. W. Kim, H. J. Lee, M. W. Kim, T. W. Noh, W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, and S. I. Lee, Phys. Rev. B 65, 052413 (2002).

    Google Scholar 

  10. A. Pimenov, A. Loidl, and S. I. Krasnosvobodtsev, Phys. Rev. B 65, 172502 (2002).

    Google Scholar 

  11. A. K. Pradhan, Z. X. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito, and H. Ihara, Phys. Rev. B 64, 212509 (2001).

    Google Scholar 

  12. T. Masui, S. Lee, A. Yamamoto, and S. Tajima, Physica C 378–381, 216 (2002).

    Google Scholar 

  13. Yu. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B 66, 180504(R) (2002).

  14. Yu. Eltsev, Physica C 385, 162 (2003).

    Article  ADS  Google Scholar 

  15. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karpinski, A. Wisniewski, and H. W. Weber, Phys. Rev. B 66, 052505 (2002).

    Google Scholar 

  16. L. Lyard, P. Samuely, P. Szabo, C. Marcenat, T. Klein, K. H. P. Kim, C. U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, L. Paulius, J. Marcus, S. Blanchard, A. G. M. Jansen, U. Welp, G. Karapetrov, and W. K. Kwok, Supercond. Sci. Technol. 16, 193 (2003).

    Article  ADS  Google Scholar 

  17. Y. Machida, S. Sasaki, H. Fujii, M. Furuyama, I. Kakeya, and K. Kadowaki, Phys. Rev. B 67, 094507 (2003).

    Google Scholar 

  18. M. H. Jung, M. Jaime, A. H. Lacerda, G. S. Boebinger, W. N. Kang, H. J. Kim, E. M. Choi, and S. I. Lee, Chem. Phys. Lett. 343, 447 (2001).

    Article  Google Scholar 

  19. H. J. Kim, W. N. Kang, E. M. Choi, M. S. Kim, K. H. P. Kim, and S. I. Lee, Phys. Rev. Lett. 87, 087002 (2001).

    Google Scholar 

  20. H. J. Kim, W. N. Kang, H. J. Kim, E. M. Choi, K. H. P. Kim, H. S. Lee, S. I. Lee, and M. O. Mun, Physica C 391, 119 (2003).

    ADS  Google Scholar 

  21. S. Patnaik, L. D. Cooley, A. Gurevich, A. A. Polyanskii, J. Jiang, X. Y. Cai, A. A. Squitieri, M. T. Naus, M. K. Lee, J. H. Choi, L. Belenky, S. D. Bu, J. Letteri, X. Song, D. G. Schlom, S. E. Babcock, C. B. Eom, E. E. Hellstrom, and D. C. Larbalestier, Supercond. Sci. Technol. 14, 315 (2001).

    Article  ADS  Google Scholar 

  22. W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, and R. H. Hammond, Appl. Phys. Lett. 80, 3563 (2002).

    ADS  Google Scholar 

  23. Y. Bugoslavsky, Y. Miyoshi, G. K. Perkins, A. D. Caplin, L. F. Cohen, A. V. Pogrebnyakov, and X. X. Xi, Phys. Rev. B 69, 132508 (2004).

    Google Scholar 

  24. Y. Bugoslavsky, Y. Miyoshi, G. K. Perkins, A. D. Caplin, L. F. Cohen, H. Y. Zhai, H. M. Christen, A. V. Pogrebnyakov, X. X. Xi, and O. V. Dolgov, Supercond. Sci. Technol. 17, S350 (2004).

    Article  ADS  Google Scholar 

  25. S. Y. Xu, Qi Li, E. Wertz, Y. F. Hu, A. V. Pogrebnyakov, X. H. Zeng, X. X. Xi, and J. M. Redwing, Phys. Rev. B 68, 224501 (2003).

    Google Scholar 

  26. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 9, 1364 (1959)].

    MathSciNet  Google Scholar 

  27. N. R. Werthamer, Superconductivity, Ed. by R. D. Parks (Dekker Marcel, New York, 1969), Vol. 1.

    Google Scholar 

  28. A. I. Golovashkin and N. P. Shabanova, Physica C 185–189, 2709 (1991).

    Google Scholar 

  29. S. I. Krasnosvobodtsev, N. P. Shabanova, E. V. Ekimov, V. S. Nozdrin, and E. V. Pechen’, Zh. Éksp. Teor. Fiz. 108, 970 (1995) [JETP 81, 534 (1995)].

    Google Scholar 

  30. N. P. Shabanova, S. I. Krasnosvobodtsev, V. S. Nozdrin, and A. I. Golovashkin, Fiz. Tverd. Tela (St. Petersburg) 38(7), 1969 (1996) [Phys. Solid State 38 (11), 1918 (1996)].

    Google Scholar 

  31. H. Won and K. Maki, Physica C 282–287, 1837 (1997).

    Google Scholar 

  32. N. P. Shabanova, S. I. Krasnosvobodtsev, A. V. Varlashkin, and A. I. Golovashkin, Fiz. Tverd. Tela (St. Petersburg) 44, 1758 (2002) [Phys. Solid State 44 (10), 1840 (2002)].

    Google Scholar 

  33. N. P. Shabanova, S. I. Krasnosvobodtsev, A. V. Barlashkin, and A. I. Golovashkin, Proc. (Tr.) Inzh. Fiz. Inst. 4, 116 (2004).

    Google Scholar 

  34. A. A. Abrikosov, Phys. Rev. B 53, R8910 (1996).

  35. A. A. Abrikosov, Int. J. Mod. Phys. B 13, 3405 (1999).

    ADS  Google Scholar 

  36. S. I. Krasnosvobodtsev, A. V. Varlashkin, N. P. Shabanova, and A. I. Golovashkin, Zh. Tekh. Fiz. 73, 138 (2003) [Tech. Phys. 48 (8), 1071 (2003)].

    Google Scholar 

  37. N. P. Shabanova, S. I. Krasnosvobodtsev, A. V. Varlashkin, and V. S. Nozdrin, Kratk. Soobshch. Fiz. Inst. Lebedeva (FIAN), No. 12, 23 (2002).

  38. X. H. Chen, Y. S. Wang, Y. Y. Xue, R. L. Meng, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 65, 024502 (2001).

    Google Scholar 

  39. L. P. Gor’kov and T. K. Melik-Barkhudarov, Zh. Éksp. Teor. Fiz. 45, 1493 (1963) [Sov. Phys. JETP 18, 1031 (1963)].

    Google Scholar 

  40. W. H. Butler, Phys. Rev. Lett. 44, 1516 (1980).

    ADS  Google Scholar 

  41. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).

    ADS  Google Scholar 

  42. K. D. Belashchenko, M. van Schilfgaarde, and V. P. Antropov, Phys. Rev. B 64, 092503 (2001).

    Google Scholar 

  43. I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003).

    Article  ADS  Google Scholar 

  44. R. Osborn, E. A. Goremychkin, A. I. Kolesnikov, and D. G. Hinks, Phys. Rev. Lett. 87, 017005 (2001).

    Google Scholar 

  45. O. V. Dolgov, R. S. Gonnelli, G. A. Ummarino, A. A. Golubov, S. V. Ghulga, and J. Kortus, Phys. Rev. B 68, 132503 (2003).

    Google Scholar 

  46. J. Geerk, W. Gläser, F. Gompf, W. Reichardt, and E. Schneider, Low Temp. Phys. LT-14, Ed. by M. Krusius and M. Vuorio (North-Holland, Amsterdam, 1975), Vol. 2, p. 411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1541–1545.

Original Russian Text Copyright © 2005 by Krasnosvobodtsev, Varlashkin, Golovashkin, Shabanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnosvobodtsev, S.I., Varlashkin, A.V., Golovashkin, A.I. et al. Dependence of the upper critical field on the defect concentration in MgB2 and the electronic structure parameters. Phys. Solid State 47, 1600–1604 (2005). https://doi.org/10.1134/1.2045340

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045340

Keywords

Navigation