Skip to main content
Log in

Electron transport, penetration depth, and the upper critical magnetic field in ZrB12 and MgB2

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field H c2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature T R = 280 K (to be compared to T R = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at T c = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below T c/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of H c2(T) for ZrB12 (H c2(0) = 0.15 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. V. A. Gasparov, N. S. Sidorov, I. I. Zver’kova, and M. P. Kulakov, Pis’ma Zh. Éksp. Teor. Fiz. 73, 601 (2001) [JETP Lett. 73, 532 (2001)].

    Google Scholar 

  3. Z. Fisk, AIP Conf. Proc. 231, 155 (1991).

    Google Scholar 

  4. A. Yamamoto, C. Takao, T. Masui, et al., Physica C (Amsterdam) 383, 197 (2002).

    ADS  Google Scholar 

  5. R. Escamilla, O. Lovera, T. Akachi, et al., J. Phys.: Condens. Matter 16, 5979 (2004).

    Article  ADS  Google Scholar 

  6. D. P. Young, R. G. Goodrich, P. W. Adams, et al., Phys. Rev. B 65, 180518(R) (2002).

  7. D. Kaczorowski, A. J. Zaleski, O. J. Zogal, and J. Klamut, cond-mat/0103571; D. Kaczorowski, J. Klamut, and A. J. Zaleski, cond-mat/0104479.

  8. H. Rosner, W. E. Pickett, S.-L. Drechsler, et al., Phys. Rev. B 64, 144516 (2001).

    Google Scholar 

  9. N. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  10. J. Kortus, I. I. Mazin, K. D. Belashchenko, et al., Phys. Rev. Lett. 86, 4656 (2001).

    ADS  Google Scholar 

  11. M. L. Eremets, V. V. Struzhkin, H. K. Mao, and R. J. Hemley, Science 203, 272 (2001).

    ADS  Google Scholar 

  12. B. T. Matthias, T. H. Geballe, K. Andres, et al., Science 159, 530 (1968).

    ADS  Google Scholar 

  13. C. W. Chu and H. H. Hill, Science 159, 1227 (1968).

    ADS  Google Scholar 

  14. Z. Fisk, A. C. Lawson, B. T. Matthias, and E. Corenzwit, Phys. Lett. A 37A, 251 (1971).

    ADS  Google Scholar 

  15. K. Hamada, M. Wakata, N. Sugii, et al., Phys. Rev. B 48, 6892 (1993).

    Article  ADS  Google Scholar 

  16. I. R. Shein and A. L. Ivanovskii, Fiz. Tverd. Tela (St. Petersburg) 45, 1363 (2003) [Phys. Solid State 45, 1429 (2003)].

    Google Scholar 

  17. A. Leithe-Jasper, A. Sato, T. Tanaka, et al., Z. Kristallogr.—New Cryst. Struct. 217, 319 (2002).

    Google Scholar 

  18. I. R. Shein, N. I. Medvedeva, and A. L. Ivanovskii, Fiz. Tverd. Tela (St. Petersburg) 45, 1541 (2003) [Phys. Solid State 45, 1617 (2003)].

    Google Scholar 

  19. M. Paranthaman, C. Cantoni, H. Y. Zhai, et al., Appl. Phys. Lett. 78, 3669 (2001).

    Article  ADS  Google Scholar 

  20. V. A. Gasparov and A. P. Oganesyan, Physica C (Amsterdam) 178, 445 (1991).

    ADS  Google Scholar 

  21. A. Gauzzi, J. Le Cochec, G. Lamura, et al., Rev. Sci. Instrum. 71, 2147 (2000).

    Article  ADS  Google Scholar 

  22. V. A. Gasparov, G. Tsydynzhapov, I. E. Batov, and Qi Li, J. Low Temp. Phys. 139, 49 (2005); V. A. Gasparov, I. Batov, Qi Li, and C. Kwon, Physica B (Amsterdam) 284–288, 1021 (2000); Czech. J. Phys. 46 (Suppl. S3), 1401 (1996); Proc. SPIE 2697, 391 (1996); Phys. Low-Dimens. Struct. 6 (12), 36 (1995).

    Article  Google Scholar 

  23. G. Lamura, E. Di Gennaro, M. Salluzzo, et al., Phys. Rev. B 65, 020506 (2002).

  24. V. A. Gasparov, M. R. Mkrtchyan, M. A. Obolensky, and A. V. Bondarenko, Physica C (Amsterdam) 231, 197 (1994).

    ADS  Google Scholar 

  25. V. A. Gasparov, M. P. Kulakov, N. S. Sidorov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 80, 376 (2004) [JETP Lett. 80, 330 (2004)].

    Google Scholar 

  26. J. M. Ziman, Electrons and Phonons, Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  27. M. Putti, E. G. d’Agliano, D. Marré, et al., Eur. Phys. J. B 25, 439 (2002).

    Article  ADS  Google Scholar 

  28. A. V. Sologubenko, J. Jun, S. M. Kazakov, et al., Phys. Rev. B 66, 014504 (2002).

    Google Scholar 

  29. N. V. Vol’kenshtein, V. P. Dyakina, and V. E. Startsev, Phys. Status Solidi 57, 9 (1973).

    Google Scholar 

  30. V. A. Gasparov and R. Huguenin, Adv. Phys. 42, 393 (1993).

    Article  ADS  Google Scholar 

  31. I. I. Mazin, O. K. Andersen, O. Jepsen, et al., Phys. Rev. Lett. 89, 107002 (2002).

    Google Scholar 

  32. J. Halbritter, Z. Phys. 243, 201 (1971).

    Google Scholar 

  33. W. N. Hardy, D. A. Bonn, D. C. Morgan, et al., Phys. Rev. Lett. 70, 3999 (1993).

    Article  ADS  Google Scholar 

  34. D. A. Bonn, S. Kamal, K. Zhang, et al., Phys. Rev. B 50, 4051 (1994).

    Article  ADS  Google Scholar 

  35. N. Schopohl and O. V. Dolgov, Phys. Rev. Lett. 80, 4761 (1998); 81, 4025 (1998).

    Article  ADS  Google Scholar 

  36. A. Carrington, F. Manzano, R. Prozorov, et al., Phys. Rev. Lett. 86, 1074 (2001).

    Article  ADS  Google Scholar 

  37. F. Manzano, A. Carrington, N. E. Hussey, et al., Phys. Rev. Lett. 88, 047002 (2002).

    Google Scholar 

  38. Yu. A. Nefyodov, M. R. Trunin, A. F. Shevchun, et al., Europhys. Lett. 58, 422 (2002).

    Article  ADS  Google Scholar 

  39. R. S. Gonnelli, D. Daghero, G. A. Ummarino, et al., Phys. Rev. Lett. 89, 247004 (2002).

    Google Scholar 

  40. A. Brinkman, A. A. Golubov, H. Rogalla, et al., Phys. Rev. B 65, 180517 (R) (2002); A. A. Golubov, A. Brinkman, O. V. Dolgov, et al., Phys. Rev. B 66, 054524 (2002).

  41. F. Bouquet, Y. Wang, R. A. Fisher, et al., Europhys. Lett. 56, 856 (2001).

    Article  Google Scholar 

  42. E. Helfand and N. R. Werthamer, Phys. Rev. Lett. 13, 686 (1964); Phys. Rev. 147, 288 (1966).

    Article  ADS  Google Scholar 

  43. L. Lyard, P. Samuely, P. Szabo, et al., Phys. Rev. B 66, 180502 (R) (2002).

  44. A. V. Sologubenko, J. Jun, S. M. Kazakov, et al., Phys. Rev. B 65, 180505 (R) (2002).

  45. V. A. Gasparov, S. N. Ermolov, S. S. Khasanov, et al., Physica B (Amsterdam) 284–288, 1119 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 115–124.

Original English Text Copyright © 2005 by Gasparov, Sidorov, Zver’kova, Khassanov, Kulakov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparov, V.A., Sidorov, N.S., Zver’kova, I.I. et al. Electron transport, penetration depth, and the upper critical magnetic field in ZrB12 and MgB2 . J. Exp. Theor. Phys. 101, 98–106 (2005). https://doi.org/10.1134/1.2010666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010666

Keywords

Navigation