Skip to main content
Log in

Terahertz oscillator based on nonlinear frequency conversion in a double vertical cavity

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The feasibility of producing a vertical-cavity laser that operates in the far IR region and is based on the three-wave mixing due to the lattice nonlinearity of a GaAs/AlGaAs system is analyzed. It is shown that the use of a double Bragg cavity with the parameters tuned both to high-frequency oscillations (sources of nonlinear polarization) and to the difference frequency allows one to raise the intensity of the radiation in the far IR region. The power density of the radiation at a wavelength of 49.5 μm equals approximately 5 × 10−4 μW/μm2 at a drive current density of 5 kA/cm2. It is suggested that a drive current should be supplied with the use of intercavity contacts, to be located in the vicinity of a node in the difference mode; then, the absorption of radiation by free charge carriers will be reduced to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Beck, D. Hofstetter, T. Aellen, et al., Science 295, 301 (2002).

    Article  ADS  Google Scholar 

  2. O. Levi, T. Pinguet, T. Skauli, et al., Opt. Lett. 27, 2091 (2002).

    ADS  Google Scholar 

  3. V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1256 (2001) [Semiconductors 35, 1203 (2001)].

    Google Scholar 

  4. A. A. Belyanin, D. Deppe, V. V. Kocharovskii, et al., Usp. Fiz. Nauk 173, 1015 (2003) [Phys. Usp. 46, 986 (2003)].

    Google Scholar 

  5. Yu. A. Morozov, I. S. Nefedov, and V. Ya. Aleshkin, Zh. Tekh. Fiz. 74(5), 71 (2004) [Tech. Phys. 49, 592 (2004)].

    Google Scholar 

  6. Yu. A. Morozov, I. S. Nefedov, and V. Ya. Aleshkin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1392 (2004) [Semiconductors 38, 1350 (2004)].

    Google Scholar 

  7. Y. Kaneko, S. Nakagawa, Y. Ichimura, et al., J. Appl. Phys. 87, 1597 (2000).

    Article  ADS  Google Scholar 

  8. M. Rochat, L. Ajili, H. Willenberg, et al., Appl. Phys. Lett. 81, 1381 (2002).

    Article  ADS  Google Scholar 

  9. T. Dekorsy, M. Helm, V. Yakovlev, et al., Phys. Rev. Lett. 90, 055508 (2003).

  10. A. Mayer and F. Keilmann, Phys. Rev. B 33, 6954 (1986).

    ADS  Google Scholar 

  11. J. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  ADS  Google Scholar 

  12. A. S. Il’inskii and G. Ya. Slepyan, Oscillations and Waves in Electrodynamical Systems with Losses (Mosk. Gos. Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  13. S. Adachi, J. Appl. Phys. 58, R1 (1985).

    Article  ADS  Google Scholar 

  14. W. Songprakob, R. Zallen, D. Tsu, and W. Liu, J. Appl. Phys. 91, 171 (2002).

    Article  ADS  Google Scholar 

  15. W. Songprakob, R. Zallen, W. Liu, and K. Bacher, Phys. Rev. B 62, 4501 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 1, 2005, pp. 124–130.

Original Russian Text Copyright © 2005 by Morozov, Nefedov, Aleshkin, Krashnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, Y.A., Nefedov, I.S., Aleshkin, V.Y. et al. Terahertz oscillator based on nonlinear frequency conversion in a double vertical cavity. Semiconductors 39, 113–118 (2005). https://doi.org/10.1134/1.1852658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1852658

Keywords

Navigation