Skip to main content
Log in

Generation regimes of a pulsed Nd:YAG laser with transverse LED pumping and multiloop self-pumped phase-conjugate cavity

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The generation regimes in a pulsed Nd:YAG laser with transverse LED pumping and multiloop self-pumped phase-conjugate cavity on the gain gratings are studied. The differential efficiency of laser is 27% in the free-running regime at a pulse energy of up to 1 J and quality parameter M 2 of no greater than 1.5. The pulse energy under passive Q-switching is no less than 60% of the pulse energy in the free-running regime at the same beam quality. The generation of the narrow-band radiation is demonstrated. A generation band of no greater than 1.2 GHz corresponds to the primary single-frequency high-power laser pulse in the free-running mode under conditions for self-Q-switching on the gain gratings. When additional elements (F 2 :LiF and Cr4+:YAG crystals) are introduced in the optical scheme of the phase-conjugate cavity, similar narrowband single-mode generation is observed in the passive Q-switching regime as a pulse train or monopulse. The laser pulse power is up to 2 MW at a pulse duration of 20 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, Quantum Electron. 19(6), 740 (1989).

    ADS  Google Scholar 

  2. M. J. Damzen, R. P. M. Green, and K. S. Syed, Opt. Lett. 20, 1704 (1995).

    Article  ADS  Google Scholar 

  3. O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, Opt. Commun. 117, 290 (1995).

    Article  ADS  Google Scholar 

  4. A. V. Fedin, A. V. Gavrilov, T. T. Basiev, O. L. Antipov, A. S. Kuzhelev, and S. N. Smetanin, Laser Phys. 9, 433 (1999).

    Google Scholar 

  5. P. Sillard, A. Brignon, J.-P. Huignard, and J.-P. Pocholle, Opt. Lett. 23, 1093 (1998).

    Article  ADS  Google Scholar 

  6. B. A. Thompson, A. Minassian, and M. J. Damzen, J. Opt. Soc. Am. B 20, 857 (2003).

    Article  ADS  Google Scholar 

  7. O. L. Antipov, O. N. Eremeykin, A. V. Ievlev, and A. P. Savikin, Opt. Express 12, 4313 (2004).

    Article  ADS  Google Scholar 

  8. G. Smith and M. J. Damzen, Opt. Express 15, 6458 (2007).

    Article  ADS  Google Scholar 

  9. J. E. Bernard and A. J. Alcock, Opt. Lett. 18, 968 (1993).

    Article  ADS  Google Scholar 

  10. T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, and A. V. Fedin, Quantum Electron. 33, 659 (2003).

    Article  ADS  Google Scholar 

  11. T. T. Basiev, A. V. Fedin, A. V. Gavrilov, and S. N. Smetanin, Laser Phys. 16, 1610 (2006).

    Article  ADS  Google Scholar 

  12. P. C. Shardlow and M. J. Damzen, Opt. Lett. 35, 1082 (2010).

    Article  Google Scholar 

  13. T. T. Basiev, A. V. Gavrilov, M. N. Ershkov, S. N. Smetanin, A. V. Fedin, K. A. Bel’kov, A. S. Boreisho, and V. F. Lebedev, Quantum Electron. 41, 207 (2011).

    Article  ADS  Google Scholar 

  14. R. Soulard, A. Brignon, S. Raby, E. Durand, and R. Moncorge, Appl. Phys. B 106, 295 (2012).

    Article  ADS  Google Scholar 

  15. W. Zendzian, J. K. Jabczynski, M. Kaskow, L. Gorajek, J. Kwiatkowski, and K. Kopczynski, Opt. Lett. 37, 2598 (2012).

    Article  Google Scholar 

  16. A. V. Fedin, A. V. Gavrilov, M. N. Ershkov, S. N. Smetanin, and S. A. Solokhin, Izv. Ross. Akad. Nauk 76, 717 (2012).

    Google Scholar 

  17. A. P. Pogoda, T. B. Lebedeva, M. R. Yusupov, R. A. Liventsov, V. F. Lebedev, A. S. Boreysho, A. V. Gavrilov, S. N. Smetanin, and A. V. Fedin, Proc. SPIE 8677, 86770Z (2013).

    Article  Google Scholar 

  18. R. A. Liventsov, V. F. Lebedev, A. A. Myasnikov, and K. A. Bel’kov, in Proceedings of the 21st International Conference “Lasers, Measurement, Information 2011,” St. Petersburg, 2012, pp. 196–209.

  19. O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinov’ev, IEEE J. Quant. Electron. 37, 716 (2001).

    Article  ADS  Google Scholar 

  20. S. Y. Lam, and M. J. Damzen, Appl. Phys. B 76, 237 (2003).

    Article  ADS  Google Scholar 

  21. A. P. Pogoda, A. A. Ermolaev, V. F. Lebedev, S. N. Smetanin, and A. S. Boreisho, Nauchn.-Tekh. Vedom. St. Peterburgsk. Politekh. Univ. 170, 121 (2013).

    Google Scholar 

  22. T. T. Basiev, S. V. Garnov, S. M. Klimentov, P. A. Pivovarov, A. V. Gavrilov, S. N. Smetanin, S. A. Solokhin, and A. V. Fedin, Quantum Electronics 37(10), 956 (2007).

    Article  ADS  Google Scholar 

  23. A. V. Fedin, A. V. Gavrilov, S. N. Smetanin, and S. A. Solokhin, Proc. SPIE 6606, 660609 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Lebedev.

Additional information

Original Russian Text © V.F. Lebedev, A.P. Pogoda, S.N. Smetanin, A.S. Boreisho, A.V. Fedin, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 12, pp. 107–111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.F., Pogoda, A.P., Smetanin, S.N. et al. Generation regimes of a pulsed Nd:YAG laser with transverse LED pumping and multiloop self-pumped phase-conjugate cavity. Tech. Phys. 59, 1844–1848 (2014). https://doi.org/10.1134/S1063784214120159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214120159

Keywords

Navigation