Skip to main content
Log in

Defect formation in Ge1−x Six/Ge(111) epitaxial heterostructures

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Selective chemical etching and transmission electron microscopy are used to study the defect formation in Ge1−x Six/Ge(111) epitaxial heterostructures at 0.01<x<0.35. As the Si content in the solid solution (SS) increases, the dislocation densities in the epitaxial layer, at the interface, and in the near-interface region in the substrate are found to vary nonmonotonically. The difference in the depth distribution of dislocations observed in the heterostructures in three different SS composition ranges is caused by the effect of the SS composition on the kinetics of misfit-stress relaxation, in particular, on the intensity of misfit-dislocation generation and multiplication. It is found that, in the heterostructures grown by hydride epitaxy at 600°C, misfit-dislocation multiplication through a modified Frank-Read mechanism occurs only in the range 0.03<x<0.20. The results obtained are explained in the context of the effect of silicon-rich microprecipitates, which form during the spinodal decomposition of the SS, on dislocation generation and motion in the epitaxial layer. A mechanism is proposed for misfit-dislocation generation by heterogeneous sources in the epitaxial layer; the mechanism is based on the generation of interstitial dislocation loops near microprecipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hackbarth, H.-J. Herzog, M. Zeuner, G. Höck, E. A. Fitzgerald, M. Bulsara, C. Rosenblad, and H. von Känel, Thin Solid Films 369, 148 (2000).

    Article  Google Scholar 

  2. M. Bauer, K. Lyutovich, M. Oehme, E. Kasper, H.-J. Herzog, and F. Ernst, Thin Solid Films 369, 152 (2000).

    Article  Google Scholar 

  3. C. S. Peng, Z. Y. Zhao, H. Chen, J. H. Li, Y. K. Li, L. W. Guo, D. Y. Dai, Q. Huang, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Appl. Phys. Lett. 72, 3160 (1998).

    ADS  Google Scholar 

  4. F. K. LeGoues, MRS Bull., April 38 (1996).

  5. Yu. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, Usp. Fiz. Nauk 171, 689 (2001) [Phys. Usp. 44, 655 (2001)].

    Google Scholar 

  6. D. D. Perovic and D. C. Houghton, Inst. Phys. Conf. Ser. 146, 117 (1995).

    Google Scholar 

  7. D. C. Houghton, J. Appl. Phys. 70, 2136 (1991).

    Article  ADS  Google Scholar 

  8. R. Hull and J. C. Bean, Appl. Phys. Lett. 54, 925 (1989).

    Article  ADS  Google Scholar 

  9. R. Hull, J. C. Bean, L. J. Peticolas, B. E. Weir, K. Prabhakaran, and T. Ogino, Appl. Phys. Lett. 65, 327 (1994).

    Article  ADS  Google Scholar 

  10. R. Hull, E. A. Stach, R. Tromb, F. Ross, and M. Reuter, Phys. Status Solidi A 171, 133 (1999).

    ADS  Google Scholar 

  11. V. I. Vdovin, M. G. Milvidskii, T. G. Yugova, K. L. Lyutovich, and S. M. Saidov, J. Cryst. Growth 141, 109 (1994).

    Article  ADS  Google Scholar 

  12. T. G. Yugova, V. I. Vdovin, M. G. Milvidskii, L. K. Orlov, V. A. Tolomasov, A. V. Potapov, and N. V. Abrosimov, Thin Solid Films 336, 112 (1998).

    Article  Google Scholar 

  13. V. I. Vdovin, Phys. Status Solidi A 171, 239 (1999).

    ADS  Google Scholar 

  14. A. Lefebvre, C. Herbeaux, C. Bouillet, and J. Di Persio, Philos. Mag. Lett. 63, 23 (1991).

    Google Scholar 

  15. F. K. LeGoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, J. Appl. Phys. 71, 4230 (1992).

    Article  ADS  Google Scholar 

  16. K. W. Schwarz, J. Appl. Phys. 85, 120 (1999).

    ADS  Google Scholar 

  17. V. I. Vdovin, O. A. Kuznetsov, M. G. Mil’vidskii, L. K. Orlov, and T. G. Yugova, Kristallografiya 38(4), 269 (1993) [Crystallogr. Rep. 38, 573 (1993)].

    Google Scholar 

  18. X. W. Liu, A. A. Hopgood, B. F. Usher, H. Wang, and N. S. Braithwaite, J. Appl. Phys. 88, 5975 (2000).

    ADS  Google Scholar 

  19. A. R. Powell, S. S. Iyer, and F. K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994).

    ADS  Google Scholar 

  20. A. Rockett and C. J. Kiely, Phys. Rev. B 44, 1154 (1991).

    Article  ADS  Google Scholar 

  21. J. W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  22. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  23. W. Hagen and H. Strunk, Appl. Phys. 47, 85 (1978).

    Google Scholar 

  24. V. I. Vdovin, L. A. Matveeva, G. N. Semenova, M. Ya. Skorohod, Yu. A. Tkhorik, and L. S. Khazan, Phys. Status Solidi A 92, 379 (1985).

    Google Scholar 

  25. R. Beanland, J. Appl. Phys. 72, 4031 (1992).

    Article  ADS  Google Scholar 

  26. M. G. Mil’vidskii, N. S. Rytova, and E. V. Solov’eva, in Problems in Crystallography (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  27. M. Yu. Gutkin, I. A. Odiv’ko, and A. G. Sheinerman, J. Phys.: Condens. Matter 15, 3539 (2003).

    Article  ADS  Google Scholar 

  28. M. V. Mezhennyi, M. G. Mil’vidskii, and T. G. Yugova, J. Phys.: Condens. Matter 14, 12997 (2002).

    Google Scholar 

  29. E. P. Kvam, Philos. Mag. Lett. 62, 167 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1476–1483.

Original Russian Text Copyright © 2004 by Yugova, Mil’vidski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Vdovin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yugova, T.G., Mil’vidskii, M.G. & Vdovin, V.I. Defect formation in Ge1−x Six/Ge(111) epitaxial heterostructures. Phys. Solid State 46, 1520–1527 (2004). https://doi.org/10.1134/1.1788788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1788788

Keywords

Navigation