Skip to main content
Log in

Decoherence and entanglement in radiative decay of a diatomic system

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that, in the Markov approximation, relaxation of two noninteracting atoms in the field of a common thermostat leads not only to decoherence but also to the opposite process of the entanglement of atomic states, which can take on a stationary value depending on the initial conditions. This region of initial conditions narrows as the mean number of photons in the thermostat increases. The main radiative mechanism destroying an arbitrary initial entanglement of atoms is interaction of each atom with its own thermostat independent of the other. All Markov relaxation models under consideration are based on the Lindblad equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).

    Google Scholar 

  3. M. B. Menskii, Quantum Measurings and Decoherence. Models and Phenomenology (Fizmatlit, Moscow, 2001).

    Google Scholar 

  4. D. Giulini, E. Joos, C. Kiefer, et al., Decoherence and the Appearance of a Classical World in Quantum Theory (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  5. S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, quant-ph/0103063.

  6. C. Simon and J. Kempe, quant-ph/0109102.

  7. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  8. S. Ya. Kilin, Usp. Fiz. Nauk 169, 507 (1999).

    Google Scholar 

  9. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Usp. Fiz. Nauk 171, 625 (2001).

    Google Scholar 

  10. C. P. Yang and G. C. Guo, Physica A (Amsterdam) 273, 352 (1999).

    ADS  Google Scholar 

  11. G. C. Guo and C. P. Yang, Physica A (Amsterdam) 260, 173 (1998).

    Google Scholar 

  12. V. N. Gorbachev, A. I. Zhiliba, and A. I. Trubilko, Izv. Akad. Nauk, Ser. Fiz. 66, 345 (2002).

    Google Scholar 

  13. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics (Nauka, Moscow, 1988).

    Google Scholar 

  14. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance: Multiatomic Coherent Emission (Inst. of Physics Publ., Bristol, 1996).

    Google Scholar 

  15. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett. 82, 1060 (1999).

    Article  ADS  Google Scholar 

  16. A. Beige, S. F. Huelga, P. L. Knight, et al., J. Mod. Opt. 47, 401 (2000).

    ADS  MathSciNet  Google Scholar 

  17. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Fortschr. Phys. 48, 637 (2000).

    Article  ADS  Google Scholar 

  18. L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev. Lett. 85, 5643 (2000).

    ADS  Google Scholar 

  19. B. Julsgaard, A. Kozhekin, and E. S. Polzik, quant-ph/0106057.

  20. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    ADS  MATH  MathSciNet  Google Scholar 

  21. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. I. Rupasov, Zh. Éksp. Teor. Fiz. 83, 1711 (1982) [Sov. Phys. JETP 56, 989 (1982)].

    ADS  MathSciNet  Google Scholar 

  23. V. I. Yudson, Zh. Éksp. Teor. Fiz. 88, 1757 (1985) [Sov. Phys. JETP 61, 1043 (1985)].

    MathSciNet  Google Scholar 

  24. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, 1999), Appendix 1.

    Google Scholar 

  25. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998).

    Article  ADS  Google Scholar 

  27. C. Macchiavello and G. M. Palma, quant-ph/0107052.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 6, 2002, pp. 1249–1260.

Original Russian Text Copyright © 2002 by Basharov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basharov, A.M. Decoherence and entanglement in radiative decay of a diatomic system. J. Exp. Theor. Phys. 94, 1070–1079 (2002). https://doi.org/10.1134/1.1493157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1493157

Keywords

Navigation