Skip to main content
Log in

Stochastic description of quantum Brownian dynamics

  • Review article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)

    MATH  Google Scholar 

  2. H. J. Berendsen, Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  3. A. O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  4. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics (Academic Press, Orlando, 2012)

    Google Scholar 

  6. B. J. Berne, G. Cicootti, and D. F. Coker, eds., Classical and Quantum Dynamics in Condensed Phase Simulations, Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed-Phase Systems (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  7. W. Ji, H. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9, 671 (2014)

    Article  Google Scholar 

  8. A. Einstein, Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen, Ann. Phys. 322, 549 (1905)

    Article  MATH  Google Scholar 

  9. M. von Smoluchowski, Zur kinetischen theorie der Brownschen molekularbewegung und der suspensionen, Ann. Phys. 326, 756 (1906)

    Article  MATH  Google Scholar 

  10. M. Scott, Applied Stochastic Processes in Science and Engineering (University of Waterloo, Waterloo, 2013)

    Google Scholar 

  11. C. Gardiner, Handbook of Stochastic Methods, 3rd ed. (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  12. N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  13. J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  14. H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  15. P. Langevin, Sur la théorie du mouvement Brownien, C. R. Acad. Sci. Paris 146 (1908)

    Google Scholar 

  16. D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “on the theory of Brownian motion” [“sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530-533 (1908)], Am. J. Phys. 65, 1079 (1997)

    Article  ADS  Google Scholar 

  17. A. D. Fokker, Die mittlere energie rotierender elektrischer dipole im strahlungsfeld, Ann. Phys. 348, 810 (1914)

    Article  Google Scholar 

  18. M. Planck, An essay on statistical dynamics and its amplification in the quantum theory, Sitz. Ber. Preuß. Akad. Wiss. 325, 324 (1917)

    Google Scholar 

  19. A. Kolmogoroff, Über die analytischen methoden in der wahrscheinlichkeitsrechnung, Math. Ann. 104, 415 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Risken, Fokker-Planck Equation, Springer Series in Synergetics (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  21. G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930)

    Article  ADS  MATH  Google Scholar 

  22. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P. Hänggi, P. Talkner, and M. Borkovec, Reactionrate theory: fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  24. R. Kubo, A stochastic theory of line shape, Adv. Chem. Phys. 15, 101 (1969)

    Google Scholar 

  25. H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83, 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  MATH  Google Scholar 

  27. S. Nakajima, On quantum theory of transport phenomena: Steady diffusion, Prog. Theor. Phys. 20, 948 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33, 1338 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. W. Ford, J. T. Lewis, and R. F. O’Connell, Quantum Langevin equation, Phys. Rev. A 37, 4419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. C. Wang and G. E. Uhlenbeck, On the theory of the Brownian motion II, Rev. Mod. Phys. 17, 323 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. H.-P. Breuer and F. Petruccione, Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  32. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative twostate system, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  33. P. Hänggi and G. Ingold, Fundamental aspects of quantum Brownian motion, Chaos 15, 026105 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. U. Weiss, Quantum Dissipative Systems, 3rd ed., Series in Modern Condensed Matter Physics, Vol. 13 (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  35. A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 149, 374 (1983)

    Article  ADS  MATH  Google Scholar 

  36. R. Feynman and F. Vernon Jr., The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Cao, L. W. Ungar, and G. A. Voth, A novel method for simulating quantum dissipative systems, J. Chem. Phys. 104, 4189 (1996)

    Article  ADS  Google Scholar 

  38. J. T. Stockburger and C. H. Mak, Dynamical simulation of current fluctuations in a dissipative twostate system, Phys. Rev. Lett. 80, 2657 (1998)

    Article  ADS  Google Scholar 

  39. J. T. Stockburger and H. Grabert, Exact cnumber representation of non-markovian quantum dissipation, Phys. Rev. Lett. 88, 170407 (2002)

    Article  ADS  Google Scholar 

  40. W. Koch, F. Großmann, J. T. Stockburger, and J. Ankerhold, Non-Markovian dissipative semiclassical dynamics, Phys. Rev. Lett. 100, 230402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. L. Diósi and W. T. Strunz, The non-Markovian stochastic schrödinger equation for open systems, Phys. Lett. A 235, 569 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. L. Diósi, N. Gisin, and W. T. Strunz, Non-Markovian quantum state diffusion, Phys. Rev. A 58, 1699 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. W. T. Strunz, L. Diósi, and N. Gisin, Open system dynamics with non-Markovian quantum trajectories, Phys. Rev. Lett. 82, 1801 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. W. T. Strunz, L. Diósi, N. Gisin, and T. Yu, Quantum trajectories for Brownian motion, Phys. Rev. Lett. 83, 4909 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. T. Yu, Non-markovian quantum trajectories versus master equations: Finite-temperature heat bath, Phys. Rev. A 69, 062107 (2004)

    Article  ADS  Google Scholar 

  46. X. Zhao, J. Jing, B. Corn, and T. Yu, Dynamics of interacting qubits coupled to a common bath: Non-markovian quantum-state-diffusion approach, Phys. Rev. A 84, 032101 (2011)

    Article  ADS  Google Scholar 

  47. H. Breuer, Exact quantum jump approach to open systems in bosonic and spin baths, Phys. Rev. A 69, 022115 (2004)

    Article  ADS  Google Scholar 

  48. E. Calzetta, A. Roura, and E. Verdaguer, Stochastic description for open quantum systems, Physica A 319, 188 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. J. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120, 5053 (2004)

    Article  ADS  Google Scholar 

  50. J. T. Stockburger and H. Grabert, Non-Markovian quantum state diffusion, Chem. Phys. 268, 249 (2001)

    Article  ADS  Google Scholar 

  51. M. Suzuki, Generalized trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to manybody problems, Commun. Math. Phys. 51, 183 (1976)

    Article  ADS  MATH  Google Scholar 

  52. D. Gatarek and N. Gisin, Continuous quantum jumps and infinite£dimensional stochastic equations, J. Math. Phys. 32, 2152 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)

    MATH  Google Scholar 

  55. W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Finkelstein, On relations between commutators, Commun. Pure Appl. Math. 8, 245 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. H. Wichmann, Note on the algebraic aspect of the integration of a system of ordinary linear differential equations, J. Math. Phys. 2, 876 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. G. H. Weiss and A. A. Maradudin, The baker-hausdorff formula and a problem in crystal physics, J. Math. Phys. 3, 771 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Murua, The hopf algebra of rooted trees, free lie algebras, and lie series, Found. Comput. Math. 6, 387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y.-A. Yan and Y. Zhou, Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics, Phys. Rev. A 92, 022121 (2015)

    Article  ADS  Google Scholar 

  61. J. Shao, Rigorous representation and exact simulation of real gaussian stationary processes, Chem. Phys. 375, 378 (2010)

    Article  ADS  Google Scholar 

  62. R. B. Davies and D. S. Harte, Tests for hurst effect, Biometrika 74, 95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  63. A. T. A. Wood and G. Chan, Simulation of stationary gaussian processes in [0; 1]d, J. Comp. Graph. Stat. 3, 409 (1994)

    MathSciNet  Google Scholar 

  64. G. Chan and A. Wood, Algorithm AS 312 -An algo-rithm for simulating stationary gaussian random fields, App. Stat. 46, 171 (1997)

    Google Scholar 

  65. G. Chan and A. T. A. Wood, Simulation of stationary gaussian vector fields, Stat. Comp. 9, 265 (1999)

    Article  Google Scholar 

  66. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle, Rev. Mod. Phys. 52, 341 (1980)

    Article  ADS  Google Scholar 

  67. D. Mozyrsky and V. Privman, Measurement of a quantum system coupled to independent heatbath and pointer modes, Mod. Phys. Lett. B 14, 303 (2000)

    Article  ADS  Google Scholar 

  68. J. Shao, M. Ge, and H. Cheng, Decoherence of quantum-nondemolition systems, Phys. Rev. E 53, 1243 (1996)

    Article  ADS  Google Scholar 

  69. P. Schramm and H. Grabert, Effect of dissipation on squeezed quantum fluctuations, Phys. Rev. A 34, 4515 (1986)

    Article  ADS  Google Scholar 

  70. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd ed. (Springer-Verlag, Berlin, 1995)

    MATH  Google Scholar 

  71. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. (WILEY-VCH, Weinheim, 2010)

    Google Scholar 

  72. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  73. R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 27. (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960)

    Book  MATH  Google Scholar 

  74. H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the degree of non-markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  75. Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-Markovianity: characterization, quantification and detection, Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Brissaud and U. Frisch, Solving linear stochastic differential equations, J. Math. Phys. 15, 524 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. V. I. Klyatskin, Dynamics of Stochastic Systems (Elsevier Science, Amsterdam, 2005)

    MATH  Google Scholar 

  78. M. Ban, S. Kitajima, and F. Shibata, Reduced dynamics and the master equation of open quantum systems, Phys. Lett. A 374, 2324 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. E. Novikov, Functionals and the randomforce method in turbulence theory, Sov. Phys. JETP 20, 1290 (1965)

    Google Scholar 

  80. J. Cao, A phasespace study of Bloch-Redfield theory, J. Chem. Phys. 107, 3204 (1997)

    Article  ADS  Google Scholar 

  81. C. Fleming, A. Roura, and B. Hu, Exact analytical solutions to the master equation of quantum Brownian motion for a general environment, Ann. Phys. 326, 1207 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. H. Dekker, Quantization of the linearly damped harmonic oscillator, Phys. Rev. A 16, 2126 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  83. H. Dekker, Classical and quantum mechanics of the damped harmonic oscillator, Phys. Rep. 80, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  84. F. Haake and R. Reibold, Strong damping and low-temperature anomalies for the harmonic oscillator, Phys. Rev. A 32, 2462 (1985)

    Article  ADS  Google Scholar 

  85. H. Grabert, P. Schramm, and G.-L. Ingold, Quantum Brownian motion: The functional integral approach, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  86. W. G. Unruh and W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40, 1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  87. V. Ambegaokar, Dissipation and decoherence in a quantum oscillator, J. Stat. Phys. 125, 1183 (2006)

    Article  ADS  MATH  Google Scholar 

  88. B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment. II. nonlinear coupling and perturbative approach, Phys. Rev. D 47, 1576 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  90. J. J. Halliwell and T. Yu, Alternative derivation of the Hu-Paz-Zhang master equation of quantum Brownian motion, Phys. Rev. D 53, 2012 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  91. R. Karrlein and H. Grabert, Exact time evolution and master equations for the damped harmonic oscillator, Phys. Rev. E 55, 153 (1997)

    Article  ADS  Google Scholar 

  92. G. W. Ford and R. F. O’Connell, Exact solution of the Hu-Paz-Zhang master equation, Phys. Rev. D 64, 105020 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  93. E. Calzetta, A. Roura, and E. Verdaguer, Master equation for quantum Brownian motion derived by stochastic methods, Int. J. Theor. Phys. 40, 2317 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  94. W. T. Strunz and T. Yu, Convolutionless non-markovian master equations and quantum trajectories: Brownian motion, Phys. Rev. A 69, 052115 (2004)

    Article  ADS  Google Scholar 

  95. C. Chou, T. Yu, and B. L. Hu, Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment, Phys. Rev. E 77, 011112 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  96. C. Chou, B. Hu, and T. Yu, Quantum Brownian motion of a macroscopic object in a general environment, Physica A 387, 432 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  97. R. Xu, B. Tian, J. Xu, and Y. Yan, Exact dynamics of driven Brownian oscillators, J. Chem. Phys. 130, 074107 (2009)

    Article  ADS  Google Scholar 

  98. P. S. Riseborough, P. Hanggi, and U. Weiss, Exact results for a damped quantum-mechanical harmonic oscillator, Phys. Rev. A 31, 471 (1985)

    Article  ADS  Google Scholar 

  99. S. Kohler, T. Dittrich, and P. Hänggi, Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator, Phys. Rev. E 55, 300 (1997)

    Article  ADS  Google Scholar 

  100. C. Zerbe and P. Hänggi, Brownian parametric quantum oscillator with dissipation, Phys. Rev. E 52, 1533 (1995)

    Article  ADS  Google Scholar 

  101. H. Li, J. Shao, and S. Wang, Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator, Phys. Rev. E 84, 051112 (2011)

    Article  ADS  Google Scholar 

  102. J. T. Stockburger, Simulating spin-boson dynamics with stochastic Liouville-von Neumann equations, Chem. Phys. 296, 159 (2004)

    Article  ADS  Google Scholar 

  103. C. Meier and D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111, 3365 (1999)

    Article  ADS  Google Scholar 

  104. C. Kreisbeck and T. Kramer, Longlived electronic coherence in dissipative exciton dynamics of light-harvesting complexes, J. Phys. Chem. Lett. 3, 2828 (2012)

    Article  Google Scholar 

  105. V. Shapiro and V. Loginov, Formulae of differentiation and their use for solving stochastic equations, Physica A 91, 563 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  106. Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath, J. Phys. Soc. Japan 58, 101 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  107. Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41, 6676 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  108. Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of quantum dissipative dynamics, Europhys. Lett. 72, 334 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  109. Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, Extended hierarchy equation of motion for the spinboson model, J. Chem. Phys. 143, 224112 (2015)

    Article  ADS  Google Scholar 

  110. J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128, 234703 (2008)

    Article  ADS  Google Scholar 

  111. Q. Shi, L. Chen, G. Nan, R.-X. Xu, and Y. Yan, Efficient hierarchical liouville space propagator to quantum dissipative dynamics, J. Chem. Phys. 130, 084105 (2009)

    Article  ADS  Google Scholar 

  112. J. Hu, R.-X. Xu, and Y. Yan, Padé spectrum decom-position of fermi function and bose function, J. Chem. Phys. 133, 101106 (2010)

    Article  ADS  Google Scholar 

  113. K.-B. Zhu, R.-X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115, 5678 (2011)

    Article  Google Scholar 

  114. D. Alonso and I. de Vega, Hierarchy of equations of multipletime correlation functions, Phys. Rev. A 75, 052108 (2007)

    Article  ADS  Google Scholar 

  115. M. Sarovar and M. D. Grace, Reduced equations of motion for quantum systems driven by diffusive markov processes, Phys. Rev. Lett. 109, 130401 (2012)

    Article  ADS  Google Scholar 

  116. I. de Vega, On the structure of the master equation for a twolevel system coupled to a thermal bath, J. Phys. A 48, 145202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Z. Zhou, M. Chen, T. Yu, and J. Q. You, Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model, Phys. Rev. A 93, 022105 (2016)

    Article  ADS  Google Scholar 

  118. A. Ishizaki and G. R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, Proc. Nat. Acad. Sci. 106, 17255 (2009)

    Article  ADS  Google Scholar 

  119. Y.-A. Yan and O. Kühn, Laser control of dissipative two-exciton dynamics in molecular aggregates, New J. Phys. 14, 105004 (2012)

    Article  ADS  Google Scholar 

  120. Y.-A. Yan and S. Cai, Exciton seebeck effect in molecular systems, J. Chem. Phys. 141, 054105 (2014)

    Article  ADS  Google Scholar 

  121. Y. Yan, Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems, J. Chem. Phys. 144, 024305 (2016)

    Article  ADS  Google Scholar 

  122. L. Chen, R. Zheng, Q. Shi, and Y. Yan, Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers, J. Chem. Phys. 132, 024505 (2010)

    Article  ADS  Google Scholar 

  123. X. Zheng, Y. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111, 086601 (2013)

    Article  ADS  Google Scholar 

  124. S. Chakravarty and A. J. Leggett, Dynamics of the two-state system with Ohmic dissipation, Phys. Rev. Lett. 52, 5 (1984)

    Article  ADS  Google Scholar 

  125. Y. Zhou and J. Shao, Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme, J. Chem. Phys. 128, 034106 (2008)

    Article  ADS  Google Scholar 

  126. F. Lesage and H. Saleur, Boundary interaction changing operators and dynamical correlations in quantum impurity problems, Phys. Rev. Lett. 80, 4370 (1998)

    Article  ADS  Google Scholar 

  127. G. M. Whitesides, Reinventing chemistry, Angew. Chem. Int. Ed. 54, 3196 (2015)

    Article  Google Scholar 

  128. H. Primas, Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry, Lecture Notes in Chemistry (Springer, Berlin, 1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-An Yan or Jiushu Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YA., Shao, J. Stochastic description of quantum Brownian dynamics. Front. Phys. 11, 110309 (2016). https://doi.org/10.1007/s11467-016-0570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0570-9

Keywords

Navigation